1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
#ifndef BENCHMARK_H
#define BENCHMARK_H
#include <algorithm>
#include <cassert>
#include <chrono>
#include <functional>
#include <limits>
#if defined(__EMSCRIPTEN__)
#include <emscripten.h>
#endif
namespace Halide {
namespace Tools {
#if !(defined(__EMSCRIPTEN__) && defined(HALIDE_BENCHMARK_USE_EMSCRIPTEN_GET_NOW))
// Prefer high_resolution_clock, but only if it's steady...
template<bool HighResIsSteady = std::chrono::high_resolution_clock::is_steady>
struct SteadyClock {
using type = std::chrono::high_resolution_clock;
};
// ...otherwise use steady_clock.
template<>
struct SteadyClock<false> {
using type = std::chrono::steady_clock;
};
inline SteadyClock<>::type::time_point benchmark_now() {
return SteadyClock<>::type::now();
}
inline double benchmark_duration_seconds(
SteadyClock<>::type::time_point start,
SteadyClock<>::type::time_point end) {
return std::chrono::duration_cast<std::chrono::duration<double>>(end - start).count();
}
#else // __EMSCRIPTEN__
// Emscripten's std::chrono::steady_clock and/or high_resolution_clock
// can throw an exception (!) if the runtime doesn't have a truly
// steady clock available. Advice from emscripten-discuss suggested
// that emscripten_get_now() is the best bet, as it is milliseconds
// (but returned as a double, with microseconds in the fractional portion),
// using either performance.now() or performance.hrtime() depending on the
// environment. Unfortunately, it's not guaranteed to be steady, and the
// auto-benchmark algorithm reacts badly to negative times, so we'll leave this
// disabled for now; you can opt-in to this by defining HALIDE_BENCHMARK_USE_EMSCRIPTEN_GET_NOW
// if you need to build for a wasm runtime with the exception behavior above.
inline double benchmark_now() {
return emscripten_get_now();
}
inline double benchmark_duration_seconds(double start, double end) {
// emscripten_get_now is *not* guaranteed to be steady.
// Clamping to a positive value is arguably better than nothing,
// but still produces unpredictable results in the adaptive case
// (which is why this is disabled by default).
return std::max((end - start) / 1000.0, 1e-9);
}
#endif
// Benchmark the operation 'op'. The number of iterations refers to
// how many times the operation is run for each time measurement, the
// result is the minimum over a number of samples runs. The result is the
// amount of time in seconds for one iteration.
//
// NOTE: it is usually simpler and more accurate to use the adaptive
// version of benchmark() later in this file; this function is provided
// for legacy code.
//
// IMPORTANT NOTE: Using this tool for timing GPU code may be misleading,
// as it does not account for time needed to synchronize to/from the GPU;
// if the callback doesn't include calls to device_sync(), the reported
// time may only be that to queue the requests; if the callback *does*
// include calls to device_sync(), it might exaggerate the sync overhead
// for real-world use. For now, callers using this to benchmark GPU
// code should measure with extreme caution.
inline double benchmark(uint64_t samples, uint64_t iterations, const std::function<void()> &op) {
double best = std::numeric_limits<double>::infinity();
for (uint64_t i = 0; i < samples; i++) {
auto start = benchmark_now();
for (uint64_t j = 0; j < iterations; j++) {
op();
}
auto end = benchmark_now();
double elapsed_seconds = benchmark_duration_seconds(start, end);
best = std::min(best, elapsed_seconds);
}
return best / iterations;
}
// Benchmark the operation 'op': run the operation until at least min_time
// has elapsed; the number of iterations is expanded as we
// progress (based on initial runs of 'op') to minimize overhead. The time
// reported will be that of the best single iteration.
//
// Most callers should be able to get good results without needing to specify
// custom BenchmarkConfig values.
//
// IMPORTANT NOTE: Using this tool for timing GPU code may be misleading,
// as it does not account for time needed to synchronize to/from the GPU;
// if the callback doesn't include calls to device_sync(), the reported
// time may only be that to queue the requests; if the callback *does*
// include calls to device_sync(), it might exaggerate the sync overhead
// for real-world use. For now, callers using this to benchmark GPU
// code should measure with extreme caution.
constexpr uint64_t kBenchmarkMaxIterations = 1000000000;
struct BenchmarkConfig {
// Attempt to use this much time (in seconds) for the meaningful samples
// taken; initial iterations will be done to find an iterations-per-sample
// count that puts the total runtime in this ballpark.
double min_time{0.1};
// Set an absolute upper time limit. Defaults to min_time * 4.
double max_time{0.1 * 4};
// Maximum value for the computed iters-per-sample.
// We need this for degenerate cases in which we have a
// very coarse-grained timer (e.g. some Emscripten/browser environments),
// and a very short operation being benchmarked; in these cases,
// we can get timings that are effectively zero, which can explode
// the predicted next-iter into ~100B or more. It should be unusual
// that client code needs to adjust this value.
uint64_t max_iters_per_sample{1000000};
// Terminate when the relative difference between the best runtime
// seen and the third-best runtime seen is no more than
// this. Controls accuracy. The closer to zero this gets the more
// reliable the answer, but the longer it may take to run.
double accuracy{0.03};
};
struct BenchmarkResult {
// Best elapsed wall-clock time per iteration (seconds).
double wall_time;
// Number of samples used for measurement.
// (There might be additional samples taken that are not used
// for measurement.)
uint64_t samples;
// Total number of iterations across all samples.
// (There might be additional iterations taken that are not used
// for measurement.)
uint64_t iterations;
// Measured accuracy between the best and third-best result.
// Will be <= config.accuracy unless max_time is exceeded.
double accuracy;
operator double() const {
return wall_time;
}
};
inline BenchmarkResult benchmark(const std::function<void()> &op, const BenchmarkConfig &config = {}) {
BenchmarkResult result{0, 0, 0};
const double min_time = std::max(10 * 1e-6, config.min_time);
const double max_time = std::max(config.min_time, config.max_time);
const double accuracy = 1.0 + std::min(std::max(0.001, config.accuracy), 0.1);
// We will do (at least) kMinSamples samples; we will do additional
// samples until the best the kMinSamples'th results are within the
// accuracy tolerance (or we run out of iterations).
constexpr int kMinSamples = 3;
double times[kMinSamples + 1] = {0};
double total_time = 0;
uint64_t iters_per_sample = 1;
for (;;) {
result.samples = 0;
result.iterations = 0;
total_time = 0;
for (int i = 0; i < kMinSamples; i++) {
times[i] = benchmark(1, iters_per_sample, op);
result.samples++;
result.iterations += iters_per_sample;
total_time += times[i] * iters_per_sample;
}
std::sort(times, times + kMinSamples);
// Any time result <= to this is considered 'zero' here.
const double kTimeEpsilon = 1e-9;
if (times[0] < kTimeEpsilon) {
// If the fastest time is tiny, then trying to use it to predict next_iters
// can just explode into something unpredictably huge, which could take far too
// long to complete. Just double iters_per_sample and try again (or terminate if
// we're over the max).
iters_per_sample *= 2;
} else {
const double time_factor = std::max(times[0] * kMinSamples, kTimeEpsilon);
if (time_factor * iters_per_sample >= min_time) {
break;
}
// Use an estimate based on initial times to converge faster.
const double next_iters = std::max(min_time / time_factor,
iters_per_sample * 2.0);
iters_per_sample = (uint64_t)(next_iters + 0.5);
}
// Ensure we never explode beyond the max.
if (iters_per_sample >= config.max_iters_per_sample) {
iters_per_sample = config.max_iters_per_sample;
break;
}
}
// - Keep taking samples until we are accurate enough (even if we run over min_time).
// - If we are already accurate enough but have time remaining, keep taking samples.
// - No matter what, don't go over max_time; this is important, in case
// we happen to get faster results for the first samples, then happen to transition
// to throttled-down CPU state.
while ((times[0] * accuracy < times[kMinSamples - 1] || total_time < min_time) &&
total_time < max_time) {
times[kMinSamples] = benchmark(1, iters_per_sample, op);
result.samples++;
result.iterations += iters_per_sample;
total_time += times[kMinSamples] * iters_per_sample;
std::sort(times, times + kMinSamples + 1);
}
result.wall_time = times[0];
result.accuracy = (times[kMinSamples - 1] / times[0]) - 1.0;
return result;
}
} // namespace Tools
} // namespace Halide
#endif
|