1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
// Halide tutorial lesson 5: Vectorize, parallelize, unroll and tile your code
// This lesson demonstrates how to manipulate the order in which you
// evaluate pixels in a Func, including vectorization,
// parallelization, unrolling, and tiling.
// On linux, you can compile and run it like so:
// g++ lesson_05*.cpp -g -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -lpthread -ldl -o lesson_05 -std=c++17
// LD_LIBRARY_PATH=<path/to/libHalide.so> ./lesson_05
// On os x:
// g++ lesson_05*.cpp -g -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -o lesson_05 -std=c++17
// DYLD_LIBRARY_PATH=<path/to/libHalide.dylib> ./lesson_05
// If you have the entire Halide source tree, you can also build it by
// running:
// make tutorial_lesson_05_scheduling_1
// in a shell with the current directory at the top of the halide
// source tree.
#include "Halide.h"
#include <algorithm>
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
// We're going to define and schedule our gradient function in
// several different ways, and see what order pixels are computed
// in.
Var x("x"), y("y");
// First we observe the default ordering.
{
Func gradient("gradient");
gradient(x, y) = x + y;
gradient.trace_stores();
// By default we walk along the rows and then down the
// columns. This means x varies quickly, and y varies
// slowly. x is the column and y is the row, so this is a
// row-major traversal.
printf("Evaluating gradient row-major\n");
Buffer<int> output = gradient.realize({4, 4});
// See figures/lesson_05_row_major.gif for a visualization of
// what this did.
// The equivalent C is:
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
printf("\n\n");
// Tracing is one useful way to understand what a schedule is
// doing. You can also ask Halide to print out pseudocode
// showing what loops Halide is generating:
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
// Because we're using the default ordering, it should print:
// compute gradient:
// for y:
// for x:
// gradient(...) = ...
}
// Reorder variables.
{
Func gradient("gradient_col_major");
gradient(x, y) = x + y;
gradient.trace_stores();
// If we reorder x and y, we can walk down the columns
// instead. The reorder call takes the arguments of the func,
// and sets a new nesting order for the for loops that are
// generated. The arguments are specified from the innermost
// loop out, so the following call puts y in the inner loop:
gradient.reorder(y, x);
// This means y (the row) will vary quickly, and x (the
// column) will vary slowly, so this is a column-major
// traversal.
printf("Evaluating gradient column-major\n");
Buffer<int> output = gradient.realize({4, 4});
// See figures/lesson_05_col_major.gif for a visualization of
// what this did.
printf("Equivalent C:\n");
for (int x = 0; x < 4; x++) {
for (int y = 0; y < 4; y++) {
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
printf("\n");
// If we print pseudo-code for this schedule, we'll see that
// the loop over y is now inside the loop over x.
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Split a variable into two.
{
Func gradient("gradient_split");
gradient(x, y) = x + y;
gradient.trace_stores();
// The most powerful primitive scheduling operation you can do
// to a var is to split it into inner and outer sub-variables:
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);
// This breaks the loop over x into two nested loops: an outer
// one over x_outer, and an inner one over x_inner. The last
// argument to split was the "split factor". The inner loop
// runs from zero to the split factor. The outer loop runs
// from zero to the extent required of x (4 in this case)
// divided by the split factor. Within the loops, the old
// variable is defined to be outer * factor + inner. If the
// old loop started at a value other than zero, then that is
// also added within the loops.
printf("Evaluating gradient with x split into x_outer and x_inner \n");
Buffer<int> output = gradient.realize({4, 4});
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
for (int x_inner = 0; x_inner < 2; x_inner++) {
int x = x_outer * 2 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
// Note that the order of evaluation of pixels didn't actually
// change! Splitting by itself does nothing, but it does open
// up all of the scheduling possibilities that we will explore
// below.
}
// Fuse two variables into one.
{
Func gradient("gradient_fused");
gradient(x, y) = x + y;
// The opposite of splitting is 'fusing'. Fusing two variables
// merges the two loops into a single for loop over the
// product of the extents. Fusing is less important than
// splitting, but it also sees use (as we'll see later in this
// lesson). Like splitting, fusing by itself doesn't change
// the order of evaluation.
Var fused;
gradient.fuse(x, y, fused);
printf("Evaluating gradient with x and y fused\n");
Buffer<int> output = gradient.realize({4, 4});
printf("Equivalent C:\n");
for (int fused = 0; fused < 4 * 4; fused++) {
int y = fused / 4;
int x = fused % 4;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Evaluating in tiles.
{
Func gradient("gradient_tiled");
gradient(x, y) = x + y;
gradient.trace_stores();
// Now that we can both split and reorder, we can do tiled
// evaluation. Let's split both x and y by a factor of four,
// and then reorder the vars to express a tiled traversal.
//
// A tiled traversal splits the domain into small rectangular
// tiles, and outermost iterates over the tiles, and within
// that iterates over the points within each tile. It can be
// good for performance if neighboring pixels use overlapping
// input data, for example in a blur. We can express a tiled
// traversal like so:
Var x_outer, x_inner, y_outer, y_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.split(y, y_outer, y_inner, 4);
gradient.reorder(x_inner, y_inner, x_outer, y_outer);
// This pattern is common enough that there's a shorthand for it:
// gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
printf("Evaluating gradient in 4x4 tiles\n");
Buffer<int> output = gradient.realize({8, 8});
// See figures/lesson_05_tiled.gif for a visualization of this
// schedule.
printf("Equivalent C:\n");
for (int y_outer = 0; y_outer < 2; y_outer++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
for (int y_inner = 0; y_inner < 4; y_inner++) {
for (int x_inner = 0; x_inner < 4; x_inner++) {
int x = x_outer * 4 + x_inner;
int y = y_outer * 4 + y_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Evaluating in vectors.
{
Func gradient("gradient_in_vectors");
gradient(x, y) = x + y;
gradient.trace_stores();
// The nice thing about splitting is that it guarantees the
// inner variable runs from zero to the split factor. Most of
// the time the split-factor will be a compile-time constant,
// so we can replace the loop over the inner variable with a
// single vectorized computation. This time we'll split by a
// factor of four, because on X86 we can use SSE to compute in
// 4-wide vectors.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.vectorize(x_inner);
// Splitting and then vectorizing the inner variable is common
// enough that there's a short-hand for it. We could have also
// said:
//
// gradient.vectorize(x, 4);
//
// which is equivalent to:
//
// gradient.split(x, x, x_inner, 4);
// gradient.vectorize(x_inner);
//
// Note that in this case we reused the name 'x' as the new
// outer variable. Later scheduling calls that refer to x
// will refer to this new outer variable named x.
// This time we'll evaluate over an 8x4 box, so that we have
// more than one vector of work per scanline.
printf("Evaluating gradient with x_inner vectorized \n");
Buffer<int> output = gradient.realize({8, 4});
// See figures/lesson_05_vectors.gif for a visualization.
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
// The loop over x_inner has gone away, and has been
// replaced by a vectorized version of the
// expression. On x86 processors, Halide generates SSE
// for all of this.
int x_vec[] = {x_outer * 4 + 0,
x_outer * 4 + 1,
x_outer * 4 + 2,
x_outer * 4 + 3};
int val[] = {x_vec[0] + y,
x_vec[1] + y,
x_vec[2] + y,
x_vec[3] + y};
printf("Evaluating at <%d, %d, %d, %d>, <%d, %d, %d, %d>:"
" <%d, %d, %d, %d>\n",
x_vec[0], x_vec[1], x_vec[2], x_vec[3],
y, y, y, y,
val[0], val[1], val[2], val[3]);
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Unrolling a loop.
{
Func gradient("gradient_unroll");
gradient(x, y) = x + y;
gradient.trace_stores();
// If multiple pixels share overlapping data, it can make
// sense to unroll a computation so that shared values are
// only computed or loaded once. We do this similarly to how
// we expressed vectorizing. We split a dimension and then
// fully unroll the loop of the inner variable. Unrolling
// doesn't change the order in which things are evaluated.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);
gradient.unroll(x_inner);
// The shorthand for this is:
// gradient.unroll(x, 2);
printf("Evaluating gradient unrolled by a factor of two\n");
Buffer<int> result = gradient.realize({4, 4});
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
// Instead of a for loop over x_inner, we get two
// copies of the innermost statement.
{
int x_inner = 0;
int x = x_outer * 2 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
{
int x_inner = 1;
int x = x_outer * 2 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Splitting by factors that don't divide the extent.
{
Func gradient("gradient_split_7x2");
gradient(x, y) = x + y;
gradient.trace_stores();
// Splitting guarantees that the inner loop runs from zero to
// the split factor, which is important for the uses we saw
// above. So what happens when the total extent we wish to
// evaluate x over isn't a multiple of the split factor? We'll
// split by a factor three, and we'll evaluate gradient over a
// 7x2 box instead of the 4x4 box we've been using.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 3);
printf("Evaluating gradient over a 7x2 box with x split by three \n");
Buffer<int> output = gradient.realize({7, 2});
// See figures/lesson_05_split_7_by_3.gif for a visualization
// of what happened. Note that some points get evaluated more
// than once!
printf("Equivalent C:\n");
for (int y = 0; y < 2; y++) {
for (int x_outer = 0; x_outer < 3; x_outer++) { // Now runs from 0 to 2
for (int x_inner = 0; x_inner < 3; x_inner++) {
int x = x_outer * 3;
// Before we add x_inner, make sure we don't
// evaluate points outside of the 7x2 box. We'll
// clamp x to be at most 4 (7 minus the split
// factor).
if (x > 4) x = 4;
x += x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
// If you read the output, you'll see that some coordinates
// were evaluated more than once. That's generally OK, because
// pure Halide functions have no side-effects, so it's safe to
// evaluate the same point multiple times. If you're calling
// out to C functions like we are, it's your responsibility to
// make sure you can handle the same point being evaluated
// multiple times.
// The general rule is: If we require x from x_min to x_min + x_extent, and
// we split by a factor 'factor', then:
//
// x_outer runs from 0 to (x_extent + factor - 1)/factor
// x_inner runs from 0 to factor
// x = min(x_outer * factor, x_extent - factor) + x_inner + x_min
//
// In our example, x_min was 0, x_extent was 7, and factor was 3.
// However, if you write a Halide function with an update
// definition (see lesson 9), then it is not safe to evaluate
// the same point multiple times, so we won't apply this
// trick. Instead the range of values computed will be rounded
// up to the next multiple of the split factor.
}
// Fusing, tiling, and parallelizing.
{
// We saw in the previous lesson that we can parallelize
// across a variable. Here we combine it with fusing and
// tiling to express a useful pattern - processing tiles in
// parallel.
// This is where fusing shines. Fusing helps when you want to
// parallelize across multiple dimensions without introducing
// nested parallelism. Nested parallelism (parallel for loops
// within parallel for loops) is supported by Halide, but
// often gives poor performance compared to fusing the
// parallel variables into a single parallel for loop.
Func gradient("gradient_fused_tiles");
gradient(x, y) = x + y;
gradient.trace_stores();
// First we'll tile, then we'll fuse the tile indices and
// parallelize across the combination.
Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
gradient.fuse(x_outer, y_outer, tile_index);
gradient.parallel(tile_index);
// The scheduling calls all return a reference to the Func, so
// you can also chain them together into a single statement to
// make things slightly clearer:
//
// gradient
// .tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4)
// .fuse(x_outer, y_outer, tile_index)
// .parallel(tile_index);
printf("Evaluating gradient tiles in parallel\n");
Buffer<int> output = gradient.realize({8, 8});
// The tiles should occur in arbitrary order, but within each
// tile the pixels will be traversed in row-major order. See
// figures/lesson_05_parallel_tiles.gif for a visualization.
printf("Equivalent (serial) C:\n");
// This outermost loop should be a parallel for loop, but that's hard in C.
for (int tile_index = 0; tile_index < 4; tile_index++) {
int y_outer = tile_index / 2;
int x_outer = tile_index % 2;
for (int y_inner = 0; y_inner < 4; y_inner++) {
for (int x_inner = 0; x_inner < 4; x_inner++) {
int y = y_outer * 4 + y_inner;
int x = x_outer * 4 + x_inner;
printf("Evaluating at x = %d, y = %d: %d\n", x, y, x + y);
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient.print_loop_nest();
printf("\n");
}
// Putting it all together.
{
// Are you ready? We're going to use all of the features above now.
Func gradient_fast("gradient_fast");
gradient_fast(x, y) = x + y;
// We'll process 64x64 tiles in parallel.
Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient_fast
.tile(x, y, x_outer, y_outer, x_inner, y_inner, 64, 64)
.fuse(x_outer, y_outer, tile_index)
.parallel(tile_index);
// We'll compute two scanlines at once while we walk across
// each tile. We'll also vectorize in x. The easiest way to
// express this is to recursively tile again within each tile
// into 4x2 subtiles, then vectorize the subtiles across x and
// unroll them across y:
Var x_inner_outer, y_inner_outer, x_vectors, y_pairs;
gradient_fast
.tile(x_inner, y_inner, x_inner_outer, y_inner_outer, x_vectors, y_pairs, 4, 2)
.vectorize(x_vectors)
.unroll(y_pairs);
// Note that we didn't do any explicit splitting or
// reordering. Those are the most important primitive
// operations, but mostly they are buried underneath tiling,
// vectorizing, or unrolling calls.
// Now let's evaluate this over a range which is not a
// multiple of the tile size.
// If you like you can turn on tracing, but it's going to
// produce a lot of printfs. Instead we'll compute the answer
// both in C and Halide and see if the answers match.
Buffer<int> result = gradient_fast.realize({350, 250});
// See figures/lesson_05_fast.mp4 for a visualization.
printf("Checking Halide result against equivalent C...\n");
for (int tile_index = 0; tile_index < 6 * 4; tile_index++) {
int y_outer = tile_index / 4;
int x_outer = tile_index % 4;
for (int y_inner_outer = 0; y_inner_outer < 64 / 2; y_inner_outer++) {
for (int x_inner_outer = 0; x_inner_outer < 64 / 4; x_inner_outer++) {
// We're vectorized across x
int x = std::min(x_outer * 64, 350 - 64) + x_inner_outer * 4;
int x_vec[4] = {x + 0,
x + 1,
x + 2,
x + 3};
// And we unrolled across y
int y_base = std::min(y_outer * 64, 250 - 64) + y_inner_outer * 2;
{
// y_pairs = 0
int y = y_base + 0;
int y_vec[4] = {y, y, y, y};
int val[4] = {x_vec[0] + y_vec[0],
x_vec[1] + y_vec[1],
x_vec[2] + y_vec[2],
x_vec[3] + y_vec[3]};
// Check the result.
for (int i = 0; i < 4; i++) {
if (result(x_vec[i], y_vec[i]) != val[i]) {
printf("There was an error at %d %d!\n",
x_vec[i], y_vec[i]);
return -1;
}
}
}
{
// y_pairs = 1
int y = y_base + 1;
int y_vec[4] = {y, y, y, y};
int val[4] = {x_vec[0] + y_vec[0],
x_vec[1] + y_vec[1],
x_vec[2] + y_vec[2],
x_vec[3] + y_vec[3]};
// Check the result.
for (int i = 0; i < 4; i++) {
if (result(x_vec[i], y_vec[i]) != val[i]) {
printf("There was an error at %d %d!\n",
x_vec[i], y_vec[i]);
return -1;
}
}
}
}
}
}
printf("\n");
printf("Pseudo-code for the schedule:\n");
gradient_fast.print_loop_nest();
printf("\n");
// Note that in the Halide version, the algorithm is specified
// once at the top, separately from the optimizations, and there
// aren't that many lines of code total. Compare this to the C
// version. There's more code (and it isn't even parallelized or
// vectorized properly). More annoyingly, the statement of the
// algorithm (the result is x plus y) is buried in multiple places
// within the mess. This C code is hard to write, hard to read,
// hard to debug, and hard to optimize further. This is why Halide
// exists.
}
printf("Success!\n");
return 0;
}
|