1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
// Halide tutorial lesson 8: Scheduling multi-stage pipelines
// On linux, you can compile and run it like so:
// g++ lesson_08*.cpp -g -std=c++17 -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -lpthread -ldl -o lesson_08
// LD_LIBRARY_PATH=<path/to/libHalide.so> ./lesson_08
// On os x:
// g++ lesson_08*.cpp -g -std=c++17 -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -o lesson_08
// DYLD_LIBRARY_PATH=<path/to/libHalide.dylib> ./lesson_08
// If you have the entire Halide source tree, you can also build it by
// running:
// make tutorial_lesson_08_scheduling_2
// in a shell with the current directory at the top of the halide
// source tree.
#include "Halide.h"
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
// First we'll declare some Vars to use below.
Var x("x"), y("y");
// Let's examine various scheduling options for a simple two stage
// pipeline. We'll start with the default schedule:
{
Func producer("producer_default"), consumer("consumer_default");
// The first stage will be some simple pointwise math similar
// to our familiar gradient function. The value at position x,
// y is the sin of product of x and y.
producer(x, y) = sin(x * y);
// Now we'll add a second stage which averages together multiple
// points in the first stage.
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// We'll turn on tracing for both functions.
consumer.trace_stores();
producer.trace_stores();
// And evaluate it over a 4x4 box.
printf("\nEvaluating producer-consumer pipeline with default schedule\n");
consumer.realize({4, 4});
// There were no messages about computing values of the
// producer. This is because the default schedule fully
// inlines 'producer' into 'consumer'. It is as if we had
// written the following code instead:
// consumer(x, y) = (sin(x * y) +
// sin(x * (y + 1)) +
// sin((x + 1) * y) +
// sin((x + 1) * (y + 1))/4);
// All calls to 'producer' have been replaced with the body of
// 'producer', with the arguments substituted in for the
// variables.
// The equivalent C code is:
float result[4][4];
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
result[y][x] = (sin(x * y) +
sin(x * (y + 1)) +
sin((x + 1) * y) +
sin((x + 1) * (y + 1))) / 4;
}
}
printf("\n");
// If we look at the loop nest, the producer doesn't appear
// at all. It has been inlined into the consumer.
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
}
// Next we'll examine the next simplest option - computing all
// values required in the producer before computing any of the
// consumer. We call this schedule "root".
{
// Start with the same function definitions:
Func producer("producer_root"), consumer("consumer_root");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Tell Halide to evaluate all of producer before any of consumer.
producer.compute_root();
// Turn on tracing.
consumer.trace_stores();
producer.trace_stores();
// Compile and run.
printf("\nEvaluating producer.compute_root()\n");
consumer.realize({4, 4});
// Reading the output we can see that:
// A) There were stores to producer.
// B) They all happened before any stores to consumer.
// See figures/lesson_08_compute_root.gif for a visualization.
// The producer is on the left and the consumer is on the
// right. Stores are marked in orange and loads are marked in
// blue.
// Equivalent C:
float result[4][4];
// Allocate some temporary storage for the producer.
float producer_storage[5][5];
// Compute the producer.
for (int y = 0; y < 5; y++) {
for (int x = 0; x < 5; x++) {
producer_storage[y][x] = sin(x * y);
}
}
// Compute the consumer. Skip the prints this time.
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
result[y][x] = (producer_storage[y][x] +
producer_storage[y + 1][x] +
producer_storage[y][x + 1] +
producer_storage[y + 1][x + 1]) / 4;
}
}
// Note that consumer was evaluated over a 4x4 box, so Halide
// automatically inferred that producer was needed over a 5x5
// box. This is the same 'bounds inference' logic we saw in
// the previous lesson, where it was used to detect and avoid
// out-of-bounds reads from an input image.
// If we print the loop nest, we'll see something very
// similar to the C above.
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
}
// Let's compare the two approaches above from a performance
// perspective.
// Full inlining (the default schedule):
// - Temporary memory allocated: 0
// - Loads: 0
// - Stores: 16
// - Calls to sin: 64
// producer.compute_root():
// - Temporary memory allocated: 25 floats
// - Loads: 64
// - Stores: 41
// - Calls to sin: 25
// There's a trade-off here. Full inlining used minimal temporary
// memory and memory bandwidth, but did a whole bunch of redundant
// expensive math (calling sin). It evaluated most points in
// 'producer' four times. The second schedule,
// producer.compute_root(), did the mimimum number of calls to
// sin, but used more temporary memory and more memory bandwidth.
// In any given situation the correct choice can be difficult to
// make. If you're memory-bandwidth limited, or don't have much
// memory (e.g. because you're running on an old cell-phone), then
// it can make sense to do redundant math. On the other hand, sin
// is expensive, so if you're compute-limited then fewer calls to
// sin will make your program faster. Adding vectorization or
// multi-core parallelism tilts the scales in favor of doing
// redundant work, because firing up multiple cpu cores increases
// the amount of math you can do per second, but doesn't increase
// your system memory bandwidth or capacity.
// We can make choices in between full inlining and
// compute_root. Next we'll alternate between computing the
// producer and consumer on a per-scanline basis:
{
// Start with the same function definitions:
Func producer("producer_y"), consumer("consumer_y");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Tell Halide to evaluate producer as needed per y coordinate
// of the consumer:
producer.compute_at(consumer, y);
// This places the code that computes the producer just
// *inside* the consumer's for loop over y, as in the
// equivalent C below.
// Turn on tracing.
producer.trace_stores();
consumer.trace_stores();
// Compile and run.
printf("\nEvaluating producer.compute_at(consumer, y)\n");
consumer.realize({4, 4});
// See figures/lesson_08_compute_y.gif for a visualization.
// Reading the log or looking at the figure you should see
// that producer and consumer alternate on a per-scanline
// basis. Let's look at the equivalent C:
float result[4][4];
// There's an outer loop over scanlines of consumer:
for (int y = 0; y < 4; y++) {
// Allocate space and compute enough of the producer to
// satisfy this single scanline of the consumer. This
// means a 5x2 box of the producer.
float producer_storage[2][5];
for (int py = y; py < y + 2; py++) {
for (int px = 0; px < 5; px++) {
producer_storage[py - y][px] = sin(px * py);
}
}
// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {
result[y][x] = (producer_storage[0][x] +
producer_storage[1][x] +
producer_storage[0][x + 1] +
producer_storage[1][x + 1]) / 4;
}
}
// Again, if we print the loop nest, we'll see something very
// similar to the C above.
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// The performance characteristics of this strategy are in
// between inlining and compute root. We still allocate some
// temporary memory, but less than compute_root, and with
// better locality (we load from it soon after writing to it,
// so for larger images, values should still be in cache). We
// still do some redundant work, but less than full inlining:
// producer.compute_at(consumer, y):
// - Temporary memory allocated: 10 floats
// - Loads: 64
// - Stores: 56
// - Calls to sin: 40
}
// We could also say producer.compute_at(consumer, x), but this
// would be very similar to full inlining (the default
// schedule). Instead let's distinguish between the loop level at
// which we allocate storage for producer, and the loop level at
// which we actually compute it. This unlocks a few optimizations.
{
Func producer("producer_root_y"), consumer("consumer_root_y");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Tell Halide to make a buffer to store all of producer at
// the outermost level:
producer.store_root();
// ... but compute it as needed per y coordinate of the
// consumer.
producer.compute_at(consumer, y);
producer.trace_stores();
consumer.trace_stores();
printf("\nEvaluating producer.store_root().compute_at(consumer, y)\n");
consumer.realize({4, 4});
// See figures/lesson_08_store_root_compute_y.gif for a
// visualization.
// Reading the log or looking at the figure you should see
// that producer and consumer again alternate on a
// per-scanline basis. It computes a 5x2 box of the producer
// to satisfy the first scanline of the consumer, but after
// that it only computes a 5x1 box of the output for each new
// scanline of the consumer!
//
// Halide has detected that for all scanlines except for the
// first, it can reuse the values already sitting in the
// buffer we've allocated for producer. Let's look at the
// equivalent C:
float result[4][4];
// producer.store_root() implies that storage goes here:
float producer_storage[5][5];
// There's an outer loop over scanlines of consumer:
for (int y = 0; y < 4; y++) {
// Compute enough of the producer to satisfy this scanline
// of the consumer.
for (int py = y; py < y + 2; py++) {
// Skip over rows of producer that we've already
// computed in a previous iteration.
if (y > 0 && py == y) continue;
for (int px = 0; px < 5; px++) {
producer_storage[py][px] = sin(px * py);
}
}
// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {
result[y][x] = (producer_storage[y][x] +
producer_storage[y + 1][x] +
producer_storage[y][x + 1] +
producer_storage[y + 1][x + 1]) / 4;
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// The performance characteristics of this strategy are pretty
// good! The numbers are similar to compute_root, except locality
// is better. We're doing the minimum number of sin calls,
// and we load values soon after they are stored, so we're
// probably making good use of the cache:
// producer.store_root().compute_at(consumer, y):
// - Temporary memory allocated: 10 floats
// - Loads: 64
// - Stores: 41
// - Calls to sin: 25
// Note that my claimed amount of memory allocated doesn't
// match the reference C code. Halide is performing one more
// optimization under the hood. It folds the storage for the
// producer down into a circular buffer of two
// scanlines. Equivalent C would actually look like this:
{
// Actually store 2 scanlines instead of 5
float producer_storage[2][5];
for (int y = 0; y < 4; y++) {
for (int py = y; py < y + 2; py++) {
if (y > 0 && py == y) continue;
for (int px = 0; px < 5; px++) {
// Stores to producer_storage have their y coordinate bit-masked.
producer_storage[py & 1][px] = sin(px * py);
}
}
// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {
// Loads from producer_storage have their y coordinate bit-masked.
result[y][x] = (producer_storage[y & 1][x] +
producer_storage[(y + 1) & 1][x] +
producer_storage[y & 1][x + 1] +
producer_storage[(y + 1) & 1][x + 1]) / 4;
}
}
}
}
// We can do even better, by leaving the storage in the outermost
// loop, but moving the computation into the innermost loop:
{
Func producer("producer_root_x"), consumer("consumer_root_x");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Store outermost, compute innermost.
producer.store_root().compute_at(consumer, x);
producer.trace_stores();
consumer.trace_stores();
printf("\nEvaluating producer.store_root().compute_at(consumer, x)\n");
consumer.realize({4, 4});
// See figures/lesson_08_store_root_compute_x.gif for a
// visualization.
// You should see that producer and consumer now alternate on
// a per-pixel basis. Here's the equivalent C:
float result[4][4];
// producer.store_root() implies that storage goes here, but
// we can fold it down into a circular buffer of two
// scanlines:
float producer_storage[2][5];
// For every pixel of the consumer:
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
// Compute enough of the producer to satisfy this
// pixel of the consumer, but skip values that we've
// already computed:
if (y == 0 && x == 0) {
producer_storage[y & 1][x] = sin(x * y);
}
if (y == 0) {
producer_storage[y & 1][x + 1] = sin((x + 1) * y);
}
if (x == 0) {
producer_storage[(y + 1) & 1][x] = sin(x * (y + 1));
}
producer_storage[(y + 1) & 1][x + 1] = sin((x + 1) * (y + 1));
result[y][x] = (producer_storage[y & 1][x] +
producer_storage[(y + 1) & 1][x] +
producer_storage[y & 1][x + 1] +
producer_storage[(y + 1) & 1][x + 1]) / 4;
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// The performance characteristics of this strategy are the
// best so far. One of the four values of the producer we need
// is probably still sitting in a register, so I won't count
// it as a load:
// producer.store_root().compute_at(consumer, x):
// - Temporary memory allocated: 10 floats
// - Loads: 48
// - Stores: 41
// - Calls to sin: 25
}
// So what's the catch? Why not always do
// producer.store_root().compute_at(consumer, x) for this type of
// code?
//
// The answer is parallelism. In both of the previous two
// strategies we've assumed that values computed in previous
// iterations are lying around for us to reuse. This assumes that
// previous values of x or y happened earlier in time and have
// finished. This is not true if you parallelize or vectorize
// either loop. Darn. If you parallelize, Halide won't inject the
// optimizations that skip work already done if there's a parallel
// loop in between the store_at level and the compute_at level,
// and won't fold the storage down into a circular buffer either,
// which makes our store_root pointless.
// We're running out of options. We can make new ones by
// splitting. We can store_at or compute_at at the natural
// variables of the consumer (x and y), or we can split x or y
// into new inner and outer sub-variables and then schedule with
// respect to those. We'll use this to express fusion in tiles:
{
Func producer("producer_tile"), consumer("consumer_tile");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// We'll compute 8x8 of the consumer, in 4x4 tiles.
Var x_outer, y_outer, x_inner, y_inner;
consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);
// Compute the producer per tile of the consumer
producer.compute_at(consumer, x_outer);
// Notice that I wrote my schedule starting from the end of
// the pipeline (the consumer). This is because the schedule
// for the producer refers to x_outer, which we introduced
// when we tiled the consumer. You can write it in the other
// order, but it tends to be harder to read.
// Turn on tracing.
producer.trace_stores();
consumer.trace_stores();
printf("\nEvaluating:\n"
"consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 4, 4);\n"
"producer.compute_at(consumer, x_outer);\n");
consumer.realize({8, 8});
// See figures/lesson_08_tile.gif for a visualization.
// The producer and consumer now alternate on a per-tile
// basis. Here's the equivalent C:
float result[8][8];
// For every tile of the consumer:
for (int y_outer = 0; y_outer < 2; y_outer++) {
for (int x_outer = 0; x_outer < 2; x_outer++) {
// Compute the x and y coords of the start of this tile.
int x_base = x_outer * 4;
int y_base = y_outer * 4;
// Compute enough of producer to satisfy this tile. A
// 4x4 tile of the consumer requires a 5x5 tile of the
// producer.
float producer_storage[5][5];
for (int py = y_base; py < y_base + 5; py++) {
for (int px = x_base; px < x_base + 5; px++) {
producer_storage[py - y_base][px - x_base] = sin(px * py);
}
}
// Compute this tile of the consumer
for (int y_inner = 0; y_inner < 4; y_inner++) {
for (int x_inner = 0; x_inner < 4; x_inner++) {
int x = x_base + x_inner;
int y = y_base + y_inner;
result[y][x] =
(producer_storage[y - y_base][x - x_base] +
producer_storage[y - y_base + 1][x - x_base] +
producer_storage[y - y_base][x - x_base + 1] +
producer_storage[y - y_base + 1][x - x_base + 1]) / 4;
}
}
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// Tiling can make sense for problems like this one with
// stencils that reach outwards in x and y. Each tile can be
// computed independently in parallel, and the redundant work
// done by each tile isn't so bad once the tiles get large
// enough.
}
// Let's try a mixed strategy that combines what we have done with
// splitting, parallelizing, and vectorizing. This is one that
// often works well in practice for large images. If you
// understand this schedule, then you understand 95% of scheduling
// in Halide.
{
Func producer("producer_mixed"), consumer("consumer_mixed");
producer(x, y) = sin(x * y);
consumer(x, y) = (producer(x, y) +
producer(x, y + 1) +
producer(x + 1, y) +
producer(x + 1, y + 1)) / 4;
// Split the y coordinate of the consumer into strips of 16 scanlines:
Var yo, yi;
consumer.split(y, yo, yi, 16);
// Compute the strips using a thread pool and a task queue.
consumer.parallel(yo);
// Vectorize across x by a factor of four.
consumer.vectorize(x, 4);
// Now store the producer per-strip. This will be 17 scanlines
// of the producer (16+1), but hopefully it will fold down
// into a circular buffer of two scanlines:
producer.store_at(consumer, yo);
// Within each strip, compute the producer per scanline of the
// consumer, skipping work done on previous scanlines.
producer.compute_at(consumer, yi);
// Also vectorize the producer (because sin is vectorizable on x86 using SSE).
producer.vectorize(x, 4);
// Let's leave tracing off this time, because we're going to
// evaluate over a larger image.
// consumer.trace_stores();
// producer.trace_stores();
Buffer<float> halide_result = consumer.realize({160, 160});
// See figures/lesson_08_mixed.mp4 for a visualization.
// Here's the equivalent (serial) C:
float c_result[160][160];
// For every strip of 16 scanlines (this loop is parallel in
// the Halide version)
for (int yo = 0; yo < 160 / 16; yo++) {
int y_base = yo * 16;
// Allocate a two-scanline circular buffer for the producer
float producer_storage[2][161];
// For every scanline in the strip of 16:
for (int yi = 0; yi < 16; yi++) {
int y = y_base + yi;
for (int py = y; py < y + 2; py++) {
// Skip scanlines already computed *within this task*
if (yi > 0 && py == y) continue;
// Compute this scanline of the producer in 4-wide vectors
for (int x_vec = 0; x_vec < 160 / 4 + 1; x_vec++) {
int x_base = x_vec * 4;
// 4 doesn't divide 161, so push the last vector left
// (see lesson 05).
if (x_base > 161 - 4) x_base = 161 - 4;
// If you're on x86, Halide generates SSE code for this part:
int x[] = {x_base, x_base + 1, x_base + 2, x_base + 3};
float vec[4] = {sinf(x[0] * py), sinf(x[1] * py),
sinf(x[2] * py), sinf(x[3] * py)};
producer_storage[py & 1][x[0]] = vec[0];
producer_storage[py & 1][x[1]] = vec[1];
producer_storage[py & 1][x[2]] = vec[2];
producer_storage[py & 1][x[3]] = vec[3];
}
}
// Now compute consumer for this scanline:
for (int x_vec = 0; x_vec < 160 / 4; x_vec++) {
int x_base = x_vec * 4;
// Again, Halide's equivalent here uses SSE.
int x[] = {x_base, x_base + 1, x_base + 2, x_base + 3};
float vec[] = {
(producer_storage[y & 1][x[0]] +
producer_storage[(y + 1) & 1][x[0]] +
producer_storage[y & 1][x[0] + 1] +
producer_storage[(y + 1) & 1][x[0] + 1]) /
4,
(producer_storage[y & 1][x[1]] +
producer_storage[(y + 1) & 1][x[1]] +
producer_storage[y & 1][x[1] + 1] +
producer_storage[(y + 1) & 1][x[1] + 1]) /
4,
(producer_storage[y & 1][x[2]] +
producer_storage[(y + 1) & 1][x[2]] +
producer_storage[y & 1][x[2] + 1] +
producer_storage[(y + 1) & 1][x[2] + 1]) /
4,
(producer_storage[y & 1][x[3]] +
producer_storage[(y + 1) & 1][x[3]] +
producer_storage[y & 1][x[3] + 1] +
producer_storage[(y + 1) & 1][x[3] + 1]) /
4};
c_result[y][x[0]] = vec[0];
c_result[y][x[1]] = vec[1];
c_result[y][x[2]] = vec[2];
c_result[y][x[3]] = vec[3];
}
}
}
printf("Pseudo-code for the schedule:\n");
consumer.print_loop_nest();
printf("\n");
// Look on my code, ye mighty, and despair!
// Let's check the C result against the Halide result. Doing
// this I found several bugs in my C implementation, which
// should tell you something.
for (int y = 0; y < 160; y++) {
for (int x = 0; x < 160; x++) {
float error = halide_result(x, y) - c_result[y][x];
// It's floating-point math, so we'll allow some slop:
if (error < -0.001f || error > 0.001f) {
printf("halide_result(%d, %d) = %f instead of %f\n",
x, y, halide_result(x, y), c_result[y][x]);
return -1;
}
}
}
}
// This stuff is hard. We ended up in a three-way trade-off
// between memory bandwidth, redundant work, and
// parallelism. Halide can't make the correct choice for you
// automatically (sorry). Instead it tries to make it easier for
// you to explore various options, without messing up your
// program. In fact, Halide promises that scheduling calls like
// compute_root won't change the meaning of your algorithm -- you
// should get the same bits back no matter how you schedule
// things.
// So be empirical! Experiment with various schedules and keep a
// log of performance. Form hypotheses and then try to prove
// yourself wrong. Don't assume that you just need to vectorize
// your code by a factor of four and run it on eight cores and
// you'll get 32x faster. This almost never works. Modern systems
// are complex enough that you can't predict performance reliably
// without running your code.
// We suggest you start by scheduling all of your non-trivial
// stages compute_root, and then work from the end of the pipeline
// upwards, inlining, parallelizing, and vectorizing each stage in
// turn until you reach the top.
// Halide is not just about vectorizing and parallelizing your
// code. That's not enough to get you very far. Halide is about
// giving you tools that help you quickly explore different
// trade-offs between locality, redundant work, and parallelism,
// without messing up the actual result you're trying to compute.
printf("Success!\n");
return 0;
}
|