1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
// Halide tutorial lesson 19: Wrapper Funcs
// This lesson demonstrates how to use Func::in and ImageParam::in to
// schedule a Func differently in different places, and to stage loads
// from a Func or an ImageParam.
// On linux, you can compile and run it like so:
// g++ lesson_19*.cpp -g -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -lpthread -ldl -o lesson_19 -std=c++17
// LD_LIBRARY_PATH=<path/to/libHalide.so> ./lesson_19
// On os x:
// g++ lesson_19*.cpp -g -I <path/to/Halide.h> -L <path/to/libHalide.so> -lHalide -o lesson_19 -std=c++17
// DYLD_LIBRARY_PATH=<path/to/libHalide.dylib> ./lesson_19
// If you have the entire Halide source tree, you can also build it by
// running:
// make tutorial_lesson_19_wrapper_funcs
// in a shell at the top of the halide source tree.
// The only Halide header file you need is Halide.h. It includes all of Halide.
#include "Halide.h"
// We'll also include stdio for printf.
#include <stdio.h>
using namespace Halide;
int main(int argc, char **argv) {
// First we'll declare some Vars to use below.
Var x("x"), y("y"), xo("xo"), yo("yo"), xi("xi"), yi("yi");
// This lesson will be about "wrapping" a Func or an ImageParam using the
// Func::in and ImageParam::in directives
{
// Consider a simple two-stage pipeline:
Func f("f_local"), g("g_local");
f(x, y) = x + y;
g(x, y) = 2 * f(x, y) + 3;
f.compute_root();
// This produces the following loop nests:
// for y:
// for x:
// f(x, y) = x + y
// for y:
// for x:
// g(x, y) = 2 * f(x, y) + 3
// Using Func::in, we can interpose a new Func in between f
// and g using the schedule alone:
Func f_in_g = f.in(g);
f_in_g.compute_root();
// Equivalently, we could also chain the schedules like so:
// f.in(g).compute_root();
// This produces the following three loop nests:
// for y:
// for x:
// f(x, y) = x + y
// for y:
// for x:
// f_in_g(x, y) = f(x, y)
// for y:
// for x:
// g(x, y) = 2 * f_in_g(x, y) + 3
g.realize({5, 5});
// See figures/lesson_19_wrapper_local.mp4 for a visualization.
// The schedule directive f.in(g) replaces all calls to 'f'
// inside 'g' with a wrapper Func and then returns that
// wrapper. Essentially, it rewrites the original pipeline
// above into the following:
{
Func f_in_g("f_in_g"), f("f"), g("g");
f(x, y) = x + y;
f_in_g(x, y) = f(x, y);
g(x, y) = 2 * f_in_g(x, y) + 3;
f.compute_root();
f_in_g.compute_root();
g.compute_root();
}
// In isolation, such a transformation seems pointless, but it
// can be used for a variety of scheduling tricks.
}
{
// In the schedule above, only the calls to 'f' made by 'g'
// are replaced. Other calls made to f would still call 'f'
// directly. If we wish to globally replace all calls to 'f'
// with a single wrapper, we simply say f.in().
// Consider a three stage pipeline, with two consumers of f:
Func f("f_global"), g("g_global"), h("h_global");
f(x, y) = x + y;
g(x, y) = 2 * f(x, y);
h(x, y) = 3 + g(x, y) - f(x, y);
f.compute_root();
g.compute_root();
h.compute_root();
// We will replace all calls to 'f' inside both 'g' and 'h'
// with calls to a single wrapper:
f.in().compute_root();
// The equivalent loop nests are:
// for y:
// for x:
// f(x, y) = x + y
// for y:
// for x:
// f_in(x, y) = f(x, y)
// for y:
// for x:
// g(x, y) = 2 * f_in(x, y)
// for y:
// for x:
// h(x, y) = 3 + g(x, y) - f_in(x, y)
h.realize({5, 5});
// See figures/lesson_19_wrapper_global.mp4 and for a
// visualization of what this did.
}
{
// We could also give g and h their own unique wrappers of
// f. This time we'll schedule them each inside the loop nests
// of the consumer, which is not something we could do with a
// single global wrapper.
Func f("f_unique"), g("g_unique"), h("h_unique");
f(x, y) = x + y;
g(x, y) = 2 * f(x, y);
h(x, y) = 3 + g(x, y) - f(x, y);
f.compute_root();
g.compute_root();
h.compute_root();
f.in(g).compute_at(g, y);
f.in(h).compute_at(h, y);
// This creates the loop nests:
// for y:
// for x:
// f(x, y) = x + y
// for y:
// for x:
// f_in_g(x, y) = f(x, y)
// for x:
// g(x, y) = 2 * f_in_g(x, y)
// for y:
// for x:
// f_in_h(x, y) = f(x, y)
// for x:
// h(x, y) = 3 + g(x, y) - f_in_h(x, y)
h.realize({5, 5});
// See figures/lesson_19_wrapper_unique.mp4 for a visualization.
}
{
// So far this may seem like a lot of pointless copying of
// memory. Func::in can be combined with other scheduling
// directives for a variety of purposes. The first we will
// examine is creating distinct realizations of a Func for
// several consumers and scheduling each differently.
// We'll start with nearly the same pipeline.
Func f("f_sched"), g("g_sched"), h("h_sched");
f(x, y) = x + y;
g(x, y) = 2 * f(x, y);
// h will use a far-away region of f
h(x, y) = 3 + g(x, y) - f(x + 93, y - 87);
// This time we'll inline f.
// f.compute_root();
g.compute_root();
h.compute_root();
f.in(g).compute_at(g, y);
f.in(h).compute_at(h, y);
// g and h now call f via distinct wrappers. The wrappers are
// scheduled, but f is not, which means that f is inlined into
// its two wrappers. They will each independently compute the
// region of f required by their consumer. If we had scheduled
// f compute_root, we'd be computing the bounding box of the
// region required by g and the region required by h, which
// would mostly be unused data.
// We can also schedule each of these wrappers
// differently. For scheduling purposes, wrappers inherit the
// pure vars of the Func they wrap, so we use the same x and y
// that we used when defining f:
f.in(g).vectorize(x, 4);
f.in(h).split(x, xo, xi, 2).reorder(xo, xi);
// Note that calling f.in(g) a second time returns the wrapper
// already created by the first call, it doesn't make a new one.
h.realize({8, 8});
// See figures/lesson_19_wrapper_vary_schedule.mp4 for a
// visualization.
// Note that because f is inlined into its two wrappers, it is
// the wrappers that do the work of computing f, rather than
// just loading from an existing computed realization.
}
{
// Func::in is useful to stage loads from a Func via some
// smaller intermediate buffer, perhaps on the stack or in
// shared GPU memory.
// Consider a pipeline that transposes some compute_root'd Func:
Func f("f_transpose"), g("g_transpose");
f(x, y) = sin(((x + y) * sqrt(y)) / 10);
f.compute_root();
g(x, y) = f(y, x);
// The execution strategy we want is to load an 4x4 tile of f
// into registers, transpose it in-register, and then write it
// out as an 4x4 tile of g. We will use Func::in to express this:
Func f_tile = f.in(g);
// We now have a three stage pipeline:
// f -> f_tile -> g
// f_tile will load vectors of f, and store them transposed
// into registers. g will then write this data back to main
// memory.
g.tile(x, y, xo, yo, xi, yi, 4, 4)
.vectorize(xi)
.unroll(yi);
// We will compute f_transpose at tiles of g, and use
// Func::reorder_storage to state that f_transpose should be
// stored column-major, so that the loads to it done by g can
// be dense vector loads.
f_tile.compute_at(g, xo)
.reorder_storage(y, x)
.vectorize(x)
.unroll(y);
// We take care to make sure f_transpose is only ever accessed
// at constant indicies. The full unrolling/vectorization of
// all loops that exist inside its compute_at level has this
// effect. Allocations that are only ever accessed at constant
// indices can be promoted into registers.
g.realize({16, 16});
// See figures/lesson_19_transpose.mp4 for a visualization
}
{
// ImageParam::in behaves the same way as Func::in, and you
// can use it to stage loads in similar ways. Instead of
// transposing again, we'll use ImageParam::in to stage tiles
// of an input image into GPU shared memory, effectively using
// shared/local memory as an explicitly-managed cache.
ImageParam img(Int(32), 2);
// We will compute a small blur of the input.
Func blur("blur");
blur(x, y) = (img(x - 1, y - 1) + img(x, y - 1) + img(x + 1, y - 1) +
img(x - 1, y) + img(x, y) + img(x + 1, y) +
img(x - 1, y + 1) + img(x, y + 1) + img(x + 1, y + 1));
blur.compute_root().gpu_tile(x, y, xo, yo, xi, yi, 8, 8);
// The wrapper Func created by ImageParam::in has pure vars
// named _0, _1, etc. Schedule it per tile of "blur", and map
// _0 and _1 to gpu threads.
img.in(blur).compute_at(blur, xo).gpu_threads(_0, _1);
// Without Func::in, computing an 8x8 tile of blur would do
// 8*8*9 loads to global memory. With Func::in, the wrapper
// does 10*10 loads to global memory up front, and then blur
// does 8*8*9 loads to shared/local memory.
// Select an appropriate GPU API, as we did in lesson 12
Target target = get_host_target();
if (target.os == Target::OSX) {
target.set_feature(Target::Metal);
} else {
target.set_feature(Target::OpenCL);
}
// This check isn't strictly necessary, but it allows a more graceful
// exit if running on a system that doesn't have the expected drivers
// and/or hardware present.
if (!host_supports_target_device(target)) {
printf("Requested GPU is not supported; skipping this test. (Do you have the proper hardware and/or driver installed?)\n");
return 0;
}
// Create an interesting input image to use.
Buffer<int> input(258, 258);
input.set_min(-1, -1);
for (int y = input.top(); y <= input.bottom(); y++) {
for (int x = input.left(); x <= input.right(); x++) {
input(x, y) = x * 17 + y % 4;
}
}
img.set(input);
blur.compile_jit(target);
Buffer<int> out = blur.realize({256, 256});
// Check the output is what we expected
for (int y = out.top(); y <= out.bottom(); y++) {
for (int x = out.left(); x <= out.right(); x++) {
int val = out(x, y);
int expected = (input(x - 1, y - 1) + input(x, y - 1) + input(x + 1, y - 1) +
input(x - 1, y) + input(x, y) + input(x + 1, y) +
input(x - 1, y + 1) + input(x, y + 1) + input(x + 1, y + 1));
if (val != expected) {
printf("out(%d, %d) = %d instead of %d\n",
x, y, val, expected);
return -1;
}
}
}
}
{
// Func::in can also be used to group multiple stages of a
// Func into the same loop nest. Consider the following
// pipeline, which computes a value per pixel, then sweeps
// from left to right and back across each scanline.
Func f("f_group"), g("g_group"), h("h_group");
// Initialize f
f(x, y) = sin(x - y);
RDom r(1, 7);
// Sweep from left to right
f(r, y) = (f(r, y) + f(r - 1, y)) / 2;
// Sweep from right to left
f(7 - r, y) = (f(7 - r, y) + f(8 - r, y)) / 2;
// Then we do something with a complicated access pattern: A
// 45 degree rotation with wrap-around
g(x, y) = f((x + y) % 8, (x - y) % 8);
// f should be scheduled compute_root, because its consumer
// accesses it in a complicated way. But that means all stages
// of f are computed in separate loop nests:
// for y:
// for x:
// f(x, y) = sin(x - y)
// for y:
// for r:
// f(r, y) = (f(r, y) + f(r - 1, y)) / 2
// for y:
// for r:
// f(7 - r, y) = (f(7 - r, y) + f(8 - r, y)) / 2
// for y:
// for x:
// g(x, y) = f((x + y) % 8, (x - y) % 8);
// We can get better locality if we schedule the work done by
// f to share a common loop over y. We can do this by
// computing f at scanlines of a wrapper like so:
f.in(g).compute_root();
f.compute_at(f.in(g), y);
// f has the default schedule for a Func with update stages,
// which is to be computed at the innermost loop of its
// consumer, which is now the wrapper f.in(g). This therefore
// generates the following loop nest, which has better
// locality:
// for y:
// for x:
// f(x, y) = sin(x - y)
// for r:
// f(r, y) = (f(r, y) + f(r - 1, y)) / 2
// for r:
// f(7 - r, y) = (f(7 - r, y) + f(8 - r, y)) / 2
// for x:
// f_in_g(x, y) = f(x, y)
// for y:
// for x:
// g(x, y) = f_in_g((x + y) % 8, (x - y) % 8);
// We'll additionally vectorize the initialization of, and
// then transfer of pixel values from f into its wrapper:
f.vectorize(x, 4);
f.in(g).vectorize(x, 4);
g.realize({8, 8});
// See figures/lesson_19_group_updates.mp4 for a visualization.
}
printf("Success!\n");
return 0;
}
|