1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
|
<Sect1 id="sec-ffi-intro">
<Title>Introduction
</Title>
<Para>
The motivation behind this foreign function interface (FFI) specification is
to make it possible to describe in Haskell <Emphasis>source code</Emphasis>
the interface to foreign functionality in a Haskell system independent
manner. It builds on experiences made with the previous foreign function
interfaces provided by GHC and Hugs. However, the FFI specified in this
document is not in the market of trying to completely bridge the gap between
the actual type of an external function, and what is a
<Emphasis>convenient</Emphasis> type for that function to the Haskell
programmer. That is the domain of tools like HaskellDirect or Green Card, both
of which are capable of generating Haskell code that uses this FFI.
</Para>
<Para>
In the following, we will discuss the language extensions of the FFI.
The extensions can be split up into two complementary halves; one half
that provides Haskell constructs for importing foreign functionality
into Haskell, the other which lets you expose Haskell functions to the
outside world. We start with the former, how to import external
functionality into Haskell.
</Para>
</Sect1>
<Sect1 id="sec-ffi-primitive">
<Title>Calling foreign functions
</Title>
<Para>
To bind a Haskell variable name and type to an external function, we
introduce a new construct: <Literal>foreign import</Literal>. It defines the type of a Haskell function together with the name of an external function that actually implements it. The syntax of <Literal>foreign import</Literal> construct is as follows:
</Para>
<Para>
<ProgramListing>
topdecl
: ...
..
| 'foreign' 'import' [callconv] [ext_fun] ['unsafe'] varid '::' prim_type
</ProgramListing>
</Para>
<Para>
A <Literal>foreign import</Literal> declaration is only allowed as a toplevel
declaration. It consists of two parts, one giving the Haskell type
(<Literal>prim_type</Literal>), Haskell name (<Literal>varid</Literal>) and a flag indicating whether the
primitive is unsafe, the other giving details of the name of the
external function (<Literal>ext_fun</Literal>) and its calling interface
(<Literal>callconv</Literal>.)
</Para>
<Para>
Giving a Haskell name and type to an external entry point is clearly
an unsafe thing to do, as the external name will in most cases be
untyped. The onus is on the programmer using <Literal>foreign import</Literal> to
ensure that the Haskell type given correctly maps on to the
type of the external function.
<XRef LinkEnd="sec-ffi-mapping"> specifies the mapping from
Haskell types to external types.
</Para>
<Sect2 id="sec-ffi-prim-name">
<Title>Giving the external function a Haskell name
</Title>
<Para>
The external function has to be given a Haskell name. The name
must be a Haskell <Literal>varid</Literal>, so the language rules regarding
variable names must be followed, i.e., it must start with a
lower case letter followed by a sequence of alphanumeric
(`in the Unicode sense') characters or '.
<Footnote>
<Para>
Notice that with Haskell 98, underscore ('_') is included in
the character class <Literal>small</Literal>.
</Para>
</Footnote>
</Para>
<Para>
<ProgramListing>
varid : small ( small | large | udigit | ' )*
</ProgramListing>
</Para>
</Sect2>
<Sect2 id="sec-ffi-prim-ext-name">
<Title>Naming the external function
</Title>
<Para>
The name of the external function is a string:
</Para>
<ProgramListing>
ext_fun : string</ProgramListing>
<Para>
For example,
</Para>
<ProgramListing>
foreign import stdcall "RegCloseKey" regCloseKey :: Ptr a -> IO ()
</ProgramListing>
<Para>
states that the external function named <Function>RegCloseKey</Function> should be bound to the Haskell name <Function>regCloseKey</Function>.</Para>
<Para>
The details of where exactly the external name can be found, such as
whether or not it is dynamically linked, and which library it might
come from, are implementation dependent. This information is expected
to be provided using a compiler-specific method (eg. GHC uses either
packages or command-line options to specify libraries and extra
include files).</para>
<Para>
If the Haskell name of the imported function is identical to the
external name, the <Literal>ext_fun</Literal> can be
omitted. e.g.:
</Para>
<Para>
<ProgramListing>
foreign import sin :: Double -> IO Double
</ProgramListing>
</Para>
<Para>
is identical to
</Para>
<Para>
<ProgramListing>
foreign import "sin" sin :: Double -> IO Double
</ProgramListing>
</Para>
</Sect2>
<Sect2 id="sec-ffi-cconv">
<Title>Calling conventions
</Title>
<Para>
The number of calling conventions supported is fixed:
</Para>
<Para>
<ProgramListing>
callconv : ccall | stdcall
</ProgramListing>
</Para>
<Para>
<VariableList>
<VarListEntry>
<Term><Literal>ccall</Literal></Term>
<ListItem>
<Para>
The 'default' calling convention on a platform, i.e., the one
used to do (C) function calls.
</Para>
<Para>
In the case of x86 platforms, the caller pushes function arguments
from right to left on the C stack before calling. The caller is
responsible for popping the arguments off of the C stack on return.
</Para>
</ListItem>
</VarListEntry>
<VarListEntry>
<Term><Literal>stdcall</Literal></Term>
<ListItem>
<Para>
A Win32 specific calling convention. The same as <Literal>ccall</Literal>, except
that the callee cleans up the C stack before returning.
<Footnote>
<Para>
The <Literal>stdcall</Literal> is a Microsoft Win32 specific wrinkle; it's used
throughout the Win32 API, for instance. On platforms where
<Literal>stdcall</Literal> isn't meaningful, it should be treated as being equal
to <Literal>ccall</Literal>.
</Para>
</Footnote>
</Para>
</ListItem>
</VarListEntry>
</VariableList>
</Para>
<Para>
<Emphasis remap="bf">Some remarks:</Emphasis>
<ItemizedList>
<ListItem>
<Para>
Interoperating well with external code is the name of the game here,
so the guiding principle when deciding on what calling conventions
to include in <Literal>callconv</Literal> is that there's a demonstrated need for
a particular calling convention. Should it emerge that the inclusion
of other calling conventions will generally improve the quality of
this Haskell FFI, they will be considered for future inclusion in
<Literal>callconv</Literal>.
</Para>
</ListItem>
<ListItem>
<Para>
Supporting <Literal>stdcall</Literal> (and perhaps other platform-specific calling
conventions) raises the issue of whether a Haskell FFI should allow
the user to write platform-specific Haskell code. The calling
convention is clearly an integral part of an external function's
interface, so if the one used differs from the standard one specified
by the platform's ABI <Emphasis>and</Emphasis> that convention is used by a
non-trivial amount of external functions, the view of the FFI authors
is that a Haskell FFI should support it.
</Para>
</ListItem>
<ListItem>
<Para>
For <Literal>foreign import</Literal> (and other <Literal>foreign</Literal> declarations),
supplying the calling convention is optional. If it isn't supplied,
it is treated as if <Literal>ccall</Literal> was specified. Users are encouraged
to leave out the specification of the calling convention, if possible.
</Para>
</ListItem>
</ItemizedList>
</Para>
</Sect2>
<Sect2 id="sec-ffi-prim-types">
<Title>External function types
</Title>
<Para>
The range of types that can be passed as arguments to an external
function is restricted (as are the range of results coming back):
</Para>
<Para>
<ProgramListing>
prim_type : IO prim_result
| prim_result
| prim_arg '->' prim_type
</ProgramListing>
</Para>
<Para>
<ItemizedList>
<ListItem>
<Para>
If you associate a non-IO type with an external function, you
have the same 'proof obligations' as when you make use of
<Function>IOExts.unsafePerformIO</Function> in your Haskell programs.
</Para>
</ListItem>
<ListItem>
<Para>
The external function is strict in all its arguments.
</Para>
</ListItem>
</ItemizedList>
</Para>
<Para>
<XRef LinkEnd="sec-ffi-results"> defines
<Literal>prim_result</Literal>; <XRef LinkEnd="sec-ffi-arguments">
defines <Literal>prim_arg</Literal>.
</Para>
<Sect3 id="sec-ffi-arguments">
<Title>Argument types
</Title>
<Para>
The external function expects zero or more arguments. The set of legal
argument types is restricted to the following set:
</Para>
<Para>
<ProgramListing>
prim_arg : ext_ty | new_ty | ForeignPtr a
new_ty : a Haskell newtype of a prim_arg.
ext_ty : int_ty | word_ty | float_ty
| Ptr a | Char | StablePtr a
| Bool
int_ty : Int | Int8 | Int16 | Int32 | Int64
word_ty : Word8 | Word16 | Word32 | Word64
float_ty : Float | Double
</ProgramListing>
</Para>
<Para>
<ItemizedList>
<ListItem>
<Para>
<Literal>ext_ty</Literal> represent the set of basic types supported by
C-like languages, although the numeric types are explicitly sized.
The <Emphasis>stable pointer</Emphasis> <Literal>StablePtr</Literal> type looks out of place in
this list of C-like types, but it has a well-defined and simple
C mapping, see <XRef LinkEnd="sec-ffi-mapping">
for details.
</Para>
</ListItem>
<ListItem>
<Para>
<Literal>prim_arg</Literal> represent the set of permissible
argument types. In addition to <Literal>ext_ty</Literal>,
<Literal>ForeignPtr</Literal> is also included.
The <Literal>ForeignPtr</Literal> type represent values that are
pointers to some external entity/object. It differs from the
<Literal>Ptr</Literal> type in that <Literal>ForeignPtr</Literal>s are
<Emphasis>finalized</Emphasis>, i.e., once the garbage collector
determines that a <Literal>ForeignPtr</Literal> is unreachable, it
will invoke a finalising procedure attached to the
<Literal>ForeignPtr</Literal> to notify the outside world that we're
through with using it.
</Para>
</ListItem>
<ListItem>
<Para>
Haskell <Literal>newtype</Literal>s that wrap up a
<Literal>prim_arg</Literal> type can also be passed to external
functions.
</Para>
</ListItem>
<ListItem>
<Para>
Haskell type synonyms for any of the above can also be used
in <Literal>foreign import</Literal> declarations. Qualified names likewise,
i.e. <Literal>Word.Word32</Literal> is legal.
</Para>
</ListItem>
<ListItem>
<Para>
<Literal>foreign import</Literal> does not support the binding to external
constants/variables. A <Literal>foreign import</Literal> declaration that takes no
arguments represent a binding to a function with no arguments.
</Para>
</ListItem>
<ListItem>
<Para>
A GHC extension is the support for unboxed types:
<ProgramListing>
prim_arg : ... | unboxed_h_ty
ext_ty : .... | unboxed_ext_ty
unboxed_ext_ty : Int# | Word# | Char#
| Float# | Double# | Addr#
| StablePtr# a
unboxed_h_ty : MutableByteArray# | ForeignObj#
| ByteArray#
</ProgramListing>
Clearly, if you want to be portable across Haskell systems, using
system-specific extensions such as this is not advisable; avoid
using them if you can. (Support for using unboxed types might
be withdrawn sometime in the future.)
</Para>
</ListItem>
</ItemizedList>
</Para>
</Sect3>
<Sect3 id="sec-ffi-results">
<Title>Result type
</Title>
<Para>
An external function is permitted to return the following
range of types:
</Para>
<Para>
<ProgramListing>
prim_result : ext_ty | new_ext_ty | ()
new_ext_ty : a Haskell newtype of an ext_ty.
</ProgramListing>
</Para>
<Para>
where <Literal>()</Literal> represents <Literal>void</Literal> / no result.
</Para>
<Para>
<ItemizedList>
<ListItem>
<Para>
External functions cannot raise exceptions (IO exceptions or non-IO ones.)
It is the responsibility of the <Literal>foreign import</Literal> user to layer
any error handling on top of an external function.
</Para>
</ListItem>
<ListItem>
<Para>
Only external types (<Literal>ext_ty</Literal>) can be passed
back, i.e., returning <Literal>ForeignPtr</Literal>s is not
supported/allowed.
</Para>
</ListItem>
<ListItem>
<Para>
Haskell newtypes that wrap up <Literal>ext_ty</Literal> are also permitted.
</Para>
</ListItem>
</ItemizedList>
</Para>
</Sect3>
</Sect2>
<Sect2 id="sec-ffi-mapping">
<Title>Type mapping
</Title>
<Para>
For the FFI to be of any practical use, the properties and sizes of
the various types that can be communicated between the Haskell world
and the outside, needs to be precisely defined. We do this by
presenting a mapping to C, as it is commonly used and most other
languages define a mapping to it. Table
<XRef LinkEnd="sec-ffi-mapping-table">
defines the mapping between Haskell and C types.
</Para>
<Para>
<Table id="sec-ffi-mapping-table">
<Title>Mapping of Haskell types to C types</Title>
<TGroup Cols="4">
<ColSpec Align="Left" Colsep="0">
<ColSpec Align="Left" Colsep="0">
<ColSpec Align="Left" Colsep="0">
<ColSpec Align="Left" Colsep="0">
<TBody>
<Row RowSep="1">
<Entry>Haskell type </Entry>
<Entry> C type </Entry>
<Entry> requirement </Entry>
<Entry> range (9) </Entry>
<Entry> </Entry>
<Entry> </Entry>
</Row>
<Row>
<Entry>
<Literal>Char</Literal> </Entry>
<Entry> <Literal>HsChar</Literal> </Entry>
<Entry> unspec. integral type </Entry>
<Entry> <Literal>HS_CHAR_MIN</Literal> .. <Literal>HS_CHAR_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Int</Literal> </Entry>
<Entry> <Literal>HsInt</Literal> </Entry>
<Entry> signed integral of unspec. size(4) </Entry>
<Entry> <Literal>HS_INT_MIN</Literal> ..
<Literal>HS_INT_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Int8</Literal> (2) </Entry>
<Entry> <Literal>HsInt8</Literal> </Entry>
<Entry> 8 bit signed integral </Entry>
<Entry> <Literal>HS_INT8_MIN</Literal>
..
<Literal>HS_INT8_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Int16</Literal> (2) </Entry>
<Entry> <Literal>HsInt16</Literal> </Entry>
<Entry> 16 bit signed integral </Entry>
<Entry> <Literal>HS_INT16_MIN</Literal>
.. <Literal>HS_INT16_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Int32</Literal> (2) </Entry>
<Entry> <Literal>HsInt32</Literal> </Entry>
<Entry> 32 bit signed integral </Entry>
<Entry> <Literal>HS_INT32_MIN</Literal> ..
<Literal>HS_INT32_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Int64</Literal> (2,3) </Entry>
<Entry> <Literal>HsInt64</Literal> </Entry>
<Entry> 64 bit signed integral (3) </Entry>
<Entry> <Literal>HS_INT64_MIN</Literal> ..
<Literal>HS_INT64_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Word8</Literal> (2) </Entry>
<Entry> <Literal>HsWord8</Literal> </Entry>
<Entry> 8 bit unsigned integral </Entry>
<Entry> <Literal>0</Literal> ..
<Literal>HS_WORD8_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Word16</Literal> (2) </Entry>
<Entry> <Literal>HsWord16</Literal> </Entry>
<Entry> 16 bit unsigned integral </Entry>
<Entry> <Literal>0</Literal> ..
<Literal>HS_WORD16_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Word32</Literal> (2) </Entry>
<Entry> <Literal>HsWord32</Literal> </Entry>
<Entry> 32 bit unsigned integral </Entry>
<Entry> <Literal>0</Literal> ..
<Literal>HS_WORD32_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Word64</Literal> (2,3) </Entry>
<Entry> <Literal>HsWord64</Literal> </Entry>
<Entry> 64 bit unsigned integral (3) </Entry>
<Entry> <Literal>0</Literal> ..
<Literal>HS_WORD64_MAX</Literal></Entry>
</Row>
<Row>
<Entry>
<Literal>Float</Literal> </Entry>
<Entry> <Literal>HsFloat</Literal> </Entry>
<Entry> floating point of unspec. size (5) </Entry>
<Entry> (10) </Entry>
</Row>
<Row>
<Entry>
<Literal>Double</Literal> </Entry>
<Entry> <Literal>HsDouble</Literal> </Entry>
<Entry> floating point of unspec. size (5) </Entry>
<Entry> (10) </Entry>
</Row>
<Row>
<Entry>
<Literal>Bool</Literal> </Entry>
<Entry> <Literal>HsBool</Literal> </Entry>
<Entry> unspec. integral type </Entry>
<Entry> (11) </Entry>
</Row>
<Row>
<Entry>
<Literal>Ptr a</Literal> </Entry>
<Entry> <Literal>HsPtr</Literal> </Entry>
<Entry> void* (6) </Entry>
<Entry> </Entry>
</Row>
<Row>
<Entry>
<Literal>ForeignPtr a</Literal> </Entry>
<Entry> <Literal>HsForeignPtr</Literal> </Entry>
<Entry> void* (7) </Entry>
<Entry> </Entry>
</Row>
<Row>
<Entry>
<Literal>StablePtr a</Literal> </Entry>
<Entry> <Literal>HsStablePtr</Literal> </Entry>
<Entry> void* (8) </Entry>
<Entry> </Entry>
</Row>
</TBody>
</TGroup>
</Table>
</Para>
<Para>
<Emphasis remap="bf">Some remarks:</Emphasis>
<OrderedList>
<ListItem>
<Para>
A Haskell system that implements the FFI will supply a header file
<Filename>HsFFI.h</Filename> that includes target platform specific definitions
for the above types and values.
</Para>
</ListItem>
<ListItem>
<Para>
The sized numeric types <Literal>Hs{Int,Word}{8,16,32,64}</Literal> have
a 1-1 mapping to ISO C 99's <Literal>{,u}int{8,16,32,64}_t</Literal>. For systems
that doesn't support this revision of ISO C, a best-fit mapping
onto the supported C types is provided.
</Para>
</ListItem>
<ListItem>
<Para>
An implementation which does not support 64 bit integral types
on the C side should implement <Literal>Hs{Int,Word}64</Literal> as a struct. In
this case the bounds <Constant>HS_INT64_{MIN,MAX}</Constant> and <Constant>HS_WORD64_MAX</Constant>
are undefined.
</Para>
</ListItem>
<ListItem>
<Para>
A valid Haskell representation of <Literal>Int</Literal> has to be equal to or
wider than 30 bits. The <Literal>HsInt</Literal> synonym is guaranteed to map
onto a C type that satisifies Haskell's requirement for <Literal>Int</Literal>.
</Para>
</ListItem>
<ListItem>
<Para>
It is guaranteed that <Literal>Hs{Float,Double}</Literal> are one of C's
floating-point types <Literal>float</Literal>/<Literal>double</Literal>/<Literal>long double</Literal>.
</Para>
</ListItem>
<ListItem>
<Para>
It is guaranteed that <Literal>HsAddr</Literal> is of the same size as <Literal>void*</Literal>, so
any other pointer type can be converted to and from HsAddr without any
loss of information (K&R, Appendix A6.8).
</Para>
</ListItem>
<ListItem>
<Para>
Foreign objects are handled like <Literal>Ptr</Literal> by the FFI, so there
is again the guarantee that <Literal>HsForeignPtr</Literal> is the same as
<Literal>void*</Literal>. The separate name is meant as a reminder that there is
a finalizer attached to the object pointed to.
</Para>
</ListItem>
<ListItem>
<Para>
Stable pointers are passed as addresses by the FFI, but this is
only because a <Literal>void*</Literal> is used as a generic container in most
APIs, not because they are real addresses. To make this special
case clear, a separate C type is used here.
</Para>
</ListItem>
<ListItem>
<Para>
The bounds are preprocessor macros, so they can be used in
<Literal>#if</Literal> and for array bounds.
</Para>
</ListItem>
<ListItem>
<Para>
Floating-point limits are a little bit more complicated, so
preprocessor macros mirroring ISO C's <Filename>float.h</Filename> are provided:
<ProgramListing>
HS_{FLOAT,DOUBLE}_RADIX
HS_{FLOAT,DOUBLE}_ROUNDS
HS_{FLOAT,DOUBLE}_EPSILON
HS_{FLOAT,DOUBLE}_DIG
HS_{FLOAT,DOUBLE}_MANT_DIG
HS_{FLOAT,DOUBLE}_MIN
HS_{FLOAT,DOUBLE}_MIN_EXP
HS_{FLOAT,DOUBLE}_MIN_10_EXP
HS_{FLOAT,DOUBLE}_MAX
HS_{FLOAT,DOUBLE}_MAX_EXP
HS_{FLOAT,DOUBLE}_MAX_10_EXP
</ProgramListing>
</Para>
</ListItem>
<ListItem>
<Para>
It is guaranteed that Haskell's <Literal>False</Literal>/<Literal>True</Literal> map to
C's <Literal>0</Literal>/<Literal>1</Literal>, respectively, and vice versa. The mapping of
any other integral value to <Literal>Bool</Literal> is left unspecified.
</Para>
</ListItem>
<ListItem>
<Para>
To avoid name clashes, identifiers starting with <Literal>Hs</Literal> and
macros starting with <Literal>HS_</Literal> are reserved for the FFI.
</Para>
</ListItem>
<ListItem>
<Para>
<Emphasis>GHC only:</Emphasis> The GHC specific types <Literal>ByteArray</Literal> and
<Literal>MutableByteArray</Literal> both map to <Literal>char*</Literal>.
</Para>
</ListItem>
</OrderedList>
</Para>
</Sect2>
<Sect2 id="sec-ffi-prim-remarks">
<Title>Some <Literal>foreign import</Literal> wrinkles
</Title>
<Para>
<ItemizedList>
<ListItem>
<Para>
By default, a <Literal>foreign import</Literal> function is <Emphasis>safe</Emphasis>. A safe
external function may cause a Haskell garbage collection as a result
of being called. This will typically happen when the imported
function end up calling Haskell functions that reside in the same
'Haskell world' (i.e., shares the same storage manager heap) -- see
<XRef LinkEnd="sec-ffi-entry"> for
details of how the FFI let's you call Haskell functions from the outside.
If the programmer can guarantee that the imported function won't
call back into Haskell, the <Literal>foreign import</Literal> can be marked as
'unsafe' (see <XRef LinkEnd="sec-ffi-primitive"> for details of
how to do this.)
Unsafe calls are cheaper than safe ones, so distinguishing the two
classes of external calls may be worth your while if you're extra
conscious about performance.
</Para>
</ListItem>
<ListItem>
<Para>
A <Literal>foreign import</Literal>ed function should clearly not need to know that
it is being called from Haskell. One consequence of this is that the
lifetimes of the arguments that are passed from Haskell <Emphasis>must</Emphasis>
equal that of a normal C call. For instance, for the following decl,
<ProgramListing>
foreign import "mumble" mumble :: ForeignPtr a -> IO ()
f :: Ptr a -> IO ()
f ptr = do
fo <- newForeignObj ptr myFinalizer
mumble fo
</ProgramListing>
The <Literal>ForeignPtr</Literal> must live across the call to
<Function>mumble</Function> even if it is not subsequently
used/reachable. Why the insistence on this? Consider what happens if
<Function>mumble</Function> calls a function which calls back into the
Haskell world to execute a function, behind our back as it were. This
evaluation may possibly cause a garbage collection, with the result
that <Literal>fo</Literal> may end up being finalised.
By guaranteeing that <Literal>fo</Literal> will be considered live
across the call to <Function>mumble</Function>, the unfortunate
situation where <Literal>fo</Literal> is finalised (and hence the
reference passed to <Function>mumble</Function> is suddenly no longer
valid) is avoided.
</Para>
</ListItem>
</ItemizedList>
</Para>
</Sect2>
</Sect1>
<Sect1 id="sec-ffi-prim-dynamic">
<Title>Invoking external functions via a pointer
</Title>
<Para>
A <Literal>foreign import</Literal> declaration imports an external
function into Haskell. (The name of the external function
is statically known, but the loading/linking of it may very well
be delayed until run-time.) A <Literal>foreign import</Literal> declaration is then
(approximately) just a type cast of an external function with a
<Emphasis>statically known name</Emphasis>.
</Para>
<Para>
An extension of <Literal>foreign import</Literal> is the support for <Emphasis>dynamic</Emphasis> type
casts of external names/addresses:
</Para>
<Para>
<ProgramListing>
topdecl
: ...
..
| 'foreign' 'import' [callconv] 'dynamic' ['unsafe']
varid :: Addr -> (prim_args -> IO prim_result)
</ProgramListing>
</Para>
<Para>
i.e., identical to a <Literal>foreign import</Literal> declaration, but for the
specification of <Literal>dynamic</Literal> instead of the name of an external
function. The presence of <Literal>dynamic</Literal> indicates that when an
application of <Literal>varid</Literal> is evaluated, the function pointed to by its
first argument will be invoked, passing it the rest of <Literal>varid</Literal>'s
arguments.
</Para>
<Para>
What are the uses of this? Native invocation of COM methods,
<Footnote>
<Para>
Or the interfacing to any other software component technologies.
</Para>
</Footnote>
Haskell libraries that want to be dressed up as C libs (and hence may have
to support C callbacks), Haskell code that need to dynamically load
and execute code.
</Para>
</Sect1>
<Sect1 id="sec-ffi-entry">
<Title>Exposing Haskell functions
</Title>
<Para>
So far we've provided the Haskell programmer with ways of importing
external functions into the Haskell world. The other half of the FFI
coin is how to expose Haskell functionality to the outside world. So,
dual to the <Literal>foreign import</Literal> declaration is <Literal>foreign export</Literal>:
</Para>
<Para>
<ProgramListing>
topdecl
: ...
..
| 'foreign' 'export' callconv [ext_name] varid :: prim_type
</ProgramListing>
</Para>
<Para>
A <Literal>foreign export</Literal> declaration tells the compiler to expose a
locally defined Haskell function to the outside world, i.e., wrap
it up behind a calling interface that's useable from C. It is only
permitted at the toplevel, where you have to specify the type at
which you want to export the function, along with the calling
convention to use. For instance, the following export declaration:
</Para>
<Para>
<ProgramListing>
foreign export ccall "foo" bar :: Int -> Addr -> IO Double
</ProgramListing>
</Para>
<Para>
will cause a Haskell system to generate the following C callable
function:
</Para>
<Para>
<ProgramListing>
HsDouble foo(HsInt arg1, HsAddr arg2);
</ProgramListing>
</Para>
<Para>
When invoked, it will call the Haskell function <Function>bar</Function>, passing
it the two arguments that was passed to <Function>foo()</Function>.
</Para>
<Para>
<ItemizedList>
<ListItem>
<Para>
The range of types that can be passed as arguments and results
is restricted, since <Literal>varid</Literal> has got a <Literal>prim_type</Literal>.
</Para>
</ListItem>
<ListItem>
<Para>
It is not possible to directly export operator symbols.
</Para>
</ListItem>
<ListItem>
<Para>
The type checker will verify that the type given for the
<Literal>foreign export</Literal> declaration is compatible with the type given to
function definition itself. The type in the <Literal>foreign export</Literal> may
be less general than that of the function itself. For example,
this is legal:
<ProgramListing>
f :: Num a => a -> a
foreign export ccall "fInt" f :: Int -> Int
foreign export ccall "fFloat" f :: Float -> Float
</ProgramListing>
These declarations export two C-callable procedures <Literal>fInt</Literal> and
<Literal>fFloat</Literal>, both of which are implemented by the (overloaded)
Haskell function <Function>f</Function>.
</Para>
</ListItem>
<ListItem>
<Para>
The <Literal>foreign export</Literal>ed IO action must catch all exceptions, as
the FFI does not address how to signal Haskell exceptions to the
outside world.
</Para>
</ListItem>
</ItemizedList>
</Para>
<Sect2 id="sec-ffi-callback">
<Title>Exposing Haskell function values
</Title>
<Para>
The <Literal>foreign export</Literal> declaration gives the C programmer access to
statically defined Haskell functions. It does not allow you to
conveniently expose dynamically-created Haskell function values as C
function pointers though. To permit this, the FFI supports
<Emphasis>dynamic</Emphasis> <Literal>foreign export</Literal>s:
</Para>
<Para>
<ProgramListing>
topdecl
: ...
..
| 'foreign' 'export' [callconv] 'dynamic' varid :: prim_type -> IO Addr
</ProgramListing>
</Para>
<Para>
A <Literal>foreign export dynamic</Literal> declaration declares a C function
pointer <Emphasis>generator</Emphasis>. Given a Haskell function value of some restricted
type, the generator wraps it up behind an externally callable interface,
returning an <Literal>Addr</Literal> to an externally callable (C) function pointer.
</Para>
<Para>
When that function pointer is eventually called, the corresponding
Haskell function value is applied to the function pointer's arguments
and evaluated, returning the result (if any) back to the caller.
</Para>
<Para>
The mapping between the argument to a <Literal>foreign export dynamic</Literal>
declaration and its corresponding C function pointer type, is as
follows:
</Para>
<Para>
<ProgramListing>
typedef cType[[Res]] (*Varid_FunPtr)
(cType[[Ty_1]] ,.., cType[[Ty_n]]);
</ProgramListing>
</Para>
<Para>
where <Literal>cType[[]]</Literal> is the Haskell to C type mapping presented
in <XRef LinkEnd="sec-ffi-mapping">.
</Para>
<Para>
To make it all a bit more concrete, here's an example:
</Para>
<Para>
<ProgramListing>
foreign export dynamic mkCallback :: (Int -> IO Int) -> IO Addr
foreign import registerCallback :: Addr -> IO ()
exportCallback :: (Int -> IO Int) -> IO ()
exportCallback f = do
fx <- mkCallback f
registerCallback fx
</ProgramListing>
</Para>
<Para>
The <Literal>exportCallback</Literal> lets you register a Haskell function value as
a callback function to some external library. The C type of the
callback that the external library expects in <Literal>registerCallback()</Literal>,
is:
<Footnote>
<Para>
An FFI implementation is encouraged to generate the C typedef corresponding
to a <Literal>foreign export dynamic</Literal> declaration, but isn't required
to do so.
</Para>
</Footnote>
</Para>
<Para>
<ProgramListing>
typedef HsInt (*mkCallback_FunPtr) (HsInt arg1);
</ProgramListing>
</Para>
<Para>
Creating the view of a Haskell closure as a C function pointer entails
registering the Haskell closure as a 'root' with the underlying
Haskell storage system, so that it won't be garbage collected. The FFI
implementation takes care of this, but when the outside world is
through with using a C function pointer generated by a <Literal>foreign
export dynamic</Literal> declaration, it needs to be explicitly freed. This is
done by calling:
</Para>
<Para>
<ProgramListing>
void freeHaskellFunctionPtr(void *ptr);
</ProgramListing>
</Para>
<Para>
In the event you need to free these function pointers from within
Haskell, a standard 'foreign import'ed binding of the above C entry
point is also provided,
</Para>
<Para>
<ProgramListing>
Foreign.freeHaskellFunctionPtr :: Addr -> IO ()
</ProgramListing>
</Para>
</Sect2>
<Sect2 id="sec-ffi-foreign-label">
<Title>Code addresses
</Title>
<Para>
The <Literal>foreign import</Literal> declaration allows us to invoke an external
function by name from within the comforts of the Haskell world, while
<Literal>foreign import dynamic</Literal> lets us invoke an external function by
address. However, there's no way of getting at the code address of
some particular external label though, which is at times useful,
e.g. for the construction of method tables for, say, Haskell COM
components. To support this, the FFI has got <Literal>foreign label</Literal>s:
</Para>
<Para>
<ProgramListing>
foreign label "freeAtLast" addrOf_freeAtLast :: Addr
</ProgramListing>
</Para>
<Para>
The meaning of this declaration is that <Literal>addrOf_freeAtLast</Literal> will now
contain the address of the label <Literal>freeAtLast</Literal>.
</Para>
</Sect2>
</Sect1>
<!-- This doesn't need to be seen in the docs
<Sect1 id="sec-ffi-changelog">
<Title>Change history
</Title>
<Para>
<ItemizedList>
<ListItem>
<Para>
0.95 > 0.96:
<ItemizedList>
<ListItem>
<Para>
changed the C representation of
<Literal>Haskell_ForeignPtr</Literal> from
<Literal>(long*)</Literal> to <Literal>(void*)</Literal> ANSI C
guarantees that <Literal>(void*)</Literal> is the widest possible data
pointer.
</Para>
</ListItem>
<ListItem>
<Para>
Updated defnition of <Literal>varid</Literal> in
<XRef LinkEnd="sec-ffi-prim-name"> to reflect Haskell98's.
</Para>
</ListItem>
<ListItem>
<Para>
Replaced confusing uses of <Literal>stdcall</Literal> with <Literal>ccall</Literal>.
</Para>
</ListItem>
</ItemizedList>
</Para>
</ListItem>
<ListItem>
<Para>
0.96 > 0.97:
<ItemizedList>
<ListItem>
<Para>
Simplified the calling convention section, support for Pascal (and
fastcall) calling conventions dropped.
</Para>
</ListItem>
<ListItem>
<Para>
Clarified that the arguments to a safe <Literal>foreign import</Literal> must have
lifetimes that equal that of a C function application.
</Para>
</ListItem>
<ListItem>
<Para>
Outlawed the use of the (GHC specific) types <Literal>ByteArray</Literal>
and <Literal>MutableByteArray</Literal> in safe <Literal>foreign import</Literal>s.
</Para>
</ListItem>
<ListItem>
<Para>
Added a note that support for the use of unboxed types in
<Literal>foreign import</Literal> may be withdrawn/deprecated sometime in the future.
</Para>
</ListItem>
<ListItem>
<Para>
Simplified section which sketches a possible implementation.
</Para>
</ListItem>
<ListItem>
<Para>
Use <Literal>Hs</Literal> as prefix for the typedefs for the primitive Haskell
FFI types rather than the longer <Literal>Haskell_</Literal>.
</Para>
</ListItem>
</ItemizedList>
</Para>
</ListItem>
<ListItem>
<Para>
0.97 > 0.98:
<ItemizedList>
<ListItem>
<Para>
Leave out implementation section; of limited interest.
</Para>
</ListItem>
<ListItem>
<Para>
Outlined the criteria used to decide on what calling
conventions to support.
</Para>
</ListItem>
<ListItem>
<Para>
Include <Literal>newtype</Literal>s that wrap primitive types in the list
of types that can be both passed to and returned from external
functions.
</Para>
</ListItem>
</ItemizedList>
</Para>
</ListItem>
<ListItem>
<Para>
0.98 > 0.99:
<ItemizedList>
<ListItem>
<Para>
Updated the section on type mapping to integrate some comments
from people on <ffi@haskell.org> (a fair chunk of the text
in that section was contributed by Sven Panne.)
</Para>
</ListItem>
<ListItem>
<Para>
<Function>freeHaskellFunctionPtr</Function> should belong to module <Literal>Foreign</Literal>, not <Literal>IOExts</Literal>.
</Para>
</ListItem>
</ItemizedList>
</Para>
</ListItem>
<ListItem>
<Para>
0.99 > 0.99.1:
<ItemizedList>
<ListItem>
<Para>
<Literal>Bool</Literal> is now an FFI-supported type (i.e., added it to
<Literal>ext_ty</Literal>.)
</Para>
</ListItem>
</ItemizedList>
</Para>
</ListItem>
</ItemizedList>
</Para>
</Sect1>
-->
|