1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
-----------------------------------------------------------------------------
Test for monadic Happy Parsers, Simon Marlow 1996.
> {
> import Char
> }
> %name calc
> %tokentype { Token }
> %monad { P } { thenP } { returnP }
> %lexer { lexer } { TokenEOF }
> %token
> let { TokenLet }
> in { TokenIn }
> int { TokenInt $$ }
> var { TokenVar $$ }
> '=' { TokenEq }
> '+' { TokenPlus }
> '-' { TokenMinus }
> '*' { TokenTimes }
> '/' { TokenDiv }
> '(' { TokenOB }
> ')' { TokenCB }
> %%
> Exp :: {Exp}
> : let var '=' Exp in Exp {% \s l -> ParseOk (Let l $2 $4 $6) }
> | Exp1 { Exp1 $1 }
>
> Exp1 :: {Exp1}
> : Exp1 '+' Term { Plus $1 $3 }
> | Exp1 '-' Term { Minus $1 $3 }
> | Term { Term $1 }
> | error { Term (Factor (Int 1)) }
>
> Term :: {Term}
> : Term '*' Factor { Times $1 $3 }
> | Term '/' Factor { Div $1 $3 }
> | Factor { Factor $1 }
>
> Factor :: {Factor}
> : int { Int $1 }
> | var { Var $1 }
> | '(' Exp ')' { Brack $2 }
> {
-----------------------------------------------------------------------------
The monad serves three purposes:
* it passes the input string around
* it passes the current line number around
* it deals with success/failure.
> data ParseResult a
> = ParseOk a
> | ParseFail String
> type P a = String -> Int -> ParseResult a
> thenP :: P a -> (a -> P b) -> P b
> m `thenP` k = \s l ->
> case m s l of
> ParseFail s -> ParseFail s
> ParseOk a -> k a s l
> returnP :: a -> P a
> returnP a = \s l -> ParseOk a
-----------------------------------------------------------------------------
Now we declare the datastructure that we are parsing.
> data Exp = Let Int String Exp Exp | Exp1 Exp1
> data Exp1 = Plus Exp1 Term | Minus Exp1 Term | Term Term
> data Term = Times Term Factor | Div Term Factor | Factor Factor
> data Factor = Int Int | Var String | Brack Exp
The datastructure for the tokens...
> data Token
> = TokenLet
> | TokenIn
> | TokenInt Int
> | TokenVar String
> | TokenEq
> | TokenPlus
> | TokenMinus
> | TokenTimes
> | TokenDiv
> | TokenOB
> | TokenCB
> | TokenEOF
.. and a simple lexer that returns this datastructure.
> lexer :: (Token -> P a) -> P a
> lexer cont s = case s of
> [] -> cont TokenEOF []
> ('\n':cs) -> \line -> lexer cont cs (line+1)
> (c:cs)
> | isSpace c -> lexer cont cs
> | isAlpha c -> lexVar (c:cs)
> | isDigit c -> lexNum (c:cs)
> ('=':cs) -> cont TokenEq cs
> ('+':cs) -> cont TokenPlus cs
> ('-':cs) -> cont TokenMinus cs
> ('*':cs) -> cont TokenTimes cs
> ('/':cs) -> cont TokenDiv cs
> ('(':cs) -> cont TokenOB cs
> (')':cs) -> cont TokenCB cs
> where
> lexNum cs = cont (TokenInt (read num)) rest
> where (num,rest) = span isDigit cs
> lexVar cs =
> case span isAlpha cs of
> ("let",rest) -> cont TokenLet rest
> ("in",rest) -> cont TokenIn rest
> (var,rest) -> cont (TokenVar var) rest
> runCalc :: String -> Exp
> runCalc s = case calc s 1 of
> ParseOk e -> e
> ParseFail s -> error s
-----------------------------------------------------------------------------
The following functions should be defined for all parsers.
This is the overall type of the parser.
> type Parse = P Exp
> calc :: Parse
The next function is called when a parse error is detected. It has
the same type as the top-level parse function.
> happyError :: P a
> happyError = \s i -> error (
> "Parse error in line " ++ show (i::Int) ++ "\n")
-----------------------------------------------------------------------------
Here we test our parser.
> main = case runCalc "1 + 2 + 3" of {
> (Exp1 (Plus (Plus (Term (Factor (Int 1))) (Factor (Int 2))) (Factor (Int 3)))) ->
> case runCalc "1 * 2 + 3" of {
> (Exp1 (Plus (Term (Times (Factor (Int 1)) (Int 2))) (Factor (Int 3)))) ->
> case runCalc "1 + 2 * 3" of {
> (Exp1 (Plus (Term (Factor (Int 1))) (Times (Factor (Int 2)) (Int 3)))) ->
> case runCalc "+ 2 * 3" of {
> (Exp1 (Plus (Term (Factor (Int 1))) (Times (Factor (Int 2)) (Int 3)))) ->
> case runCalc "let x = 2 in x * (x - 2)" of {
> (Let 1 "x" (Exp1 (Term (Factor (Int 2)))) (Exp1 (Term (Times (Factor (Var "x")) (Brack (Exp1 (Minus (Term (Factor (Var "x"))) (Factor (Int 2))))))))) -> print "Test works\n";
> _ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit }
> quit = print "Test failed\n"
> }
|