File: session.c

package info (click to toggle)
haproxy 1.5.8-3%2Bdeb8u2
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 8,248 kB
  • ctags: 6,924
  • sloc: ansic: 62,867; xml: 1,754; python: 925; makefile: 551; perl: 550; sh: 491
file content (3473 lines) | stat: -rw-r--r-- 118,776 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
/*
 * Session management functions.
 *
 * Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 *
 */

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>

#include <common/config.h>
#include <common/buffer.h>
#include <common/debug.h>
#include <common/memory.h>

#include <types/capture.h>
#include <types/global.h>

#include <proto/acl.h>
#include <proto/arg.h>
#include <proto/backend.h>
#include <proto/channel.h>
#include <proto/checks.h>
#include <proto/connection.h>
#include <proto/dumpstats.h>
#include <proto/fd.h>
#include <proto/freq_ctr.h>
#include <proto/frontend.h>
#include <proto/hdr_idx.h>
#include <proto/listener.h>
#include <proto/log.h>
#include <proto/raw_sock.h>
#include <proto/session.h>
#include <proto/pipe.h>
#include <proto/proto_http.h>
#include <proto/proto_tcp.h>
#include <proto/proxy.h>
#include <proto/queue.h>
#include <proto/server.h>
#include <proto/sample.h>
#include <proto/stick_table.h>
#include <proto/stream_interface.h>
#include <proto/task.h>

struct pool_head *pool2_session;
struct list sessions;

static int conn_session_complete(struct connection *conn);
static int conn_session_update(struct connection *conn);
static struct task *expire_mini_session(struct task *t);
int session_complete(struct session *s);

/* data layer callbacks for an embryonic session */
struct data_cb sess_conn_cb = {
	.recv = NULL,
	.send = NULL,
	.wake = conn_session_update,
	.init = conn_session_complete,
};

/* This function is called from the protocol layer accept() in order to
 * instanciate a new embryonic session on behalf of a given listener and
 * frontend. It returns a positive value upon success, 0 if the connection
 * can be ignored, or a negative value upon critical failure. The accepted
 * file descriptor is closed if we return <= 0.
 */
int session_accept(struct listener *l, int cfd, struct sockaddr_storage *addr)
{
	struct connection *cli_conn;
	struct proxy *p = l->frontend;
	struct session *s;
	struct task *t;
	int ret;


	ret = -1; /* assume unrecoverable error by default */

	if (unlikely((cli_conn = conn_new()) == NULL))
		goto out_close;

	conn_prepare(cli_conn, l->proto, l->xprt);

	cli_conn->t.sock.fd = cfd;
	cli_conn->addr.from = *addr;
	cli_conn->flags |= CO_FL_ADDR_FROM_SET;
	cli_conn->target = &l->obj_type;

	if (unlikely((s = pool_alloc2(pool2_session)) == NULL))
		goto out_free_conn;

	/* minimum session initialization required for an embryonic session is
	 * fairly low. We need very little to execute L4 ACLs, then we need a
	 * task to make the client-side connection live on its own.
	 *  - flags
	 *  - stick-entry tracking
	 */
	s->flags = 0;
	s->logs.logwait = p->to_log;
	s->logs.level = 0;

	memset(s->stkctr, 0, sizeof(s->stkctr));

	s->listener = l;
	s->fe  = p;

	/* On a mini-session, the connection is directly attached to the
	 * session's target so that we don't need to initialize the stream
	 * interfaces. Another benefit is that it's easy to detect a mini-
	 * session in dumps using this : it's the only one which has a
	 * connection in s->target.
	 */
	s->target = &cli_conn->obj_type;

	s->logs.accept_date = date; /* user-visible date for logging */
	s->logs.tv_accept = now;  /* corrected date for internal use */
	s->uniq_id = global.req_count++;
	p->feconn++;
	/* This session was accepted, count it now */
	if (p->feconn > p->fe_counters.conn_max)
		p->fe_counters.conn_max = p->feconn;

	proxy_inc_fe_conn_ctr(l, p);

	/* Add the minimum callbacks to prepare the connection's control layer.
	 * We need this so that we can safely execute the ACLs used by the
	 * "tcp-request connection" ruleset. We also carefully attach the
	 * connection to the stream interface without initializing the rest,
	 * so that ACLs can use si[0]->end.
	 */
	si_attach_conn(&s->si[0], cli_conn);
	conn_attach(cli_conn, s, &sess_conn_cb);
	conn_ctrl_init(cli_conn);

	/* now evaluate the tcp-request layer4 rules. Since we expect to be able
	 * to abort right here as soon as possible, we check the rules before
	 * even initializing the stream interfaces.
	 */
	if ((l->options & LI_O_TCP_RULES) && !tcp_exec_req_rules(s)) {
		/* let's do a no-linger now to close with a single RST. */
		setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger));
		ret = 0; /* successful termination */
		goto out_free_session;
	}

	/* monitor-net and health mode are processed immediately after TCP
	 * connection rules. This way it's possible to block them, but they
	 * never use the lower data layers, they send directly over the socket,
	 * as they were designed for. We first flush the socket receive buffer
	 * in order to avoid emission of an RST by the system. We ignore any
	 * error.
	 */
	if (unlikely((p->mode == PR_MODE_HEALTH) ||
		     ((l->options & LI_O_CHK_MONNET) &&
		      addr->ss_family == AF_INET &&
		      (((struct sockaddr_in *)addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr))) {
		/* we have 4 possibilities here :
		 *  - HTTP mode, from monitoring address => send "HTTP/1.0 200 OK"
		 *  - HEALTH mode with HTTP check => send "HTTP/1.0 200 OK"
		 *  - HEALTH mode without HTTP check => just send "OK"
		 *  - TCP mode from monitoring address => just close
		 */
		if (l->proto->drain)
			l->proto->drain(cfd);
		if (p->mode == PR_MODE_HTTP ||
		    (p->mode == PR_MODE_HEALTH && (p->options2 & PR_O2_CHK_ANY) == PR_O2_HTTP_CHK))
			send(cfd, "HTTP/1.0 200 OK\r\n\r\n", 19, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE);
		else if (p->mode == PR_MODE_HEALTH)
			send(cfd, "OK\n", 3, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE);
		ret = 0;
		goto out_free_session;
	}

	/* wait for a PROXY protocol header */
	if (l->options & LI_O_ACC_PROXY) {
		cli_conn->flags |= CO_FL_ACCEPT_PROXY;
		conn_sock_want_recv(cli_conn);
	}

	if (unlikely((t = task_new()) == NULL))
		goto out_free_session;

	t->context = s;
	t->nice = l->nice;
	s->task = t;

	/* Finish setting the callbacks. Right now the transport layer is present
	 * but not initialized. Also note we need to be careful as the stream
	 * int is not initialized yet.
	 */
	conn_data_want_recv(cli_conn);
	if (conn_xprt_init(cli_conn) < 0)
		goto out_free_task;

	/* OK, now either we have a pending handshake to execute with and
	 * then we must return to the I/O layer, or we can proceed with the
	 * end of the session initialization. In case of handshake, we also
	 * set the I/O timeout to the frontend's client timeout.
	 */

	if (cli_conn->flags & CO_FL_HANDSHAKE) {
		t->process = expire_mini_session;
		t->expire = tick_add_ifset(now_ms, p->timeout.client);
		task_queue(t);
		cli_conn->flags |= CO_FL_INIT_DATA | CO_FL_WAKE_DATA;
		return 1;
	}

	/* OK let's complete session initialization since there is no handshake */
	cli_conn->flags |= CO_FL_CONNECTED;
	ret = session_complete(s);
	if (ret > 0)
		return ret;

	/* Error unrolling */
 out_free_task:
	task_free(t);
 out_free_session:
	p->feconn--;
	session_store_counters(s);
	pool_free2(pool2_session, s);
 out_free_conn:
	cli_conn->flags &= ~CO_FL_XPRT_TRACKED;
	conn_xprt_close(cli_conn);
	conn_free(cli_conn);
 out_close:
	if (ret < 0 && l->xprt == &raw_sock && p->mode == PR_MODE_HTTP) {
		/* critical error, no more memory, try to emit a 500 response */
		struct chunk *err_msg = &p->errmsg[HTTP_ERR_500];
		if (!err_msg->str)
			err_msg = &http_err_chunks[HTTP_ERR_500];
		send(cfd, err_msg->str, err_msg->len, MSG_DONTWAIT|MSG_NOSIGNAL);
	}

	if (fdtab[cfd].owner)
		fd_delete(cfd);
	else
		close(cfd);
	return ret;
}


/* prepare the trash with a log prefix for session <s>. It only works with
 * embryonic sessions based on a real connection. This function requires that
 * at s->target still points to the incoming connection.
 */
static void prepare_mini_sess_log_prefix(struct session *s)
{
	struct tm tm;
	char pn[INET6_ADDRSTRLEN];
	int ret;
	char *end;
	struct connection *cli_conn = __objt_conn(s->target);

	ret = addr_to_str(&cli_conn->addr.from, pn, sizeof(pn));
	if (ret <= 0)
		chunk_printf(&trash, "unknown [");
	else if (ret == AF_UNIX)
		chunk_printf(&trash, "%s:%d [", pn, s->listener->luid);
	else
		chunk_printf(&trash, "%s:%d [", pn, get_host_port(&cli_conn->addr.from));

	get_localtime(s->logs.accept_date.tv_sec, &tm);
	end = date2str_log(trash.str + trash.len, &tm, &(s->logs.accept_date), trash.size - trash.len);
	trash.len = end - trash.str;
	if (s->listener->name)
		chunk_appendf(&trash, "] %s/%s", s->fe->id, s->listener->name);
	else
		chunk_appendf(&trash, "] %s/%d", s->fe->id, s->listener->luid);
}

/* This function kills an existing embryonic session. It stops the connection's
 * transport layer, releases assigned resources, resumes the listener if it was
 * disabled and finally kills the file descriptor. This function requires that
 * at s->target still points to the incoming connection.
 */
static void kill_mini_session(struct session *s)
{
	int level = LOG_INFO;
	struct connection *conn = __objt_conn(s->target);
	unsigned int log = s->logs.logwait;
	const char *err_msg;

	if (s->fe->options2 & PR_O2_LOGERRORS)
		level = LOG_ERR;

	if (log && (s->fe->options & PR_O_NULLNOLOG)) {
		/* with "option dontlognull", we don't log connections with no transfer */
		if (!conn->err_code ||
		    conn->err_code == CO_ER_PRX_EMPTY || conn->err_code == CO_ER_PRX_ABORT ||
		    conn->err_code == CO_ER_SSL_EMPTY || conn->err_code == CO_ER_SSL_ABORT)
			log = 0;
	}

	if (log) {
		if (!conn->err_code && (s->task->state & TASK_WOKEN_TIMER)) {
			if (conn->flags & CO_FL_ACCEPT_PROXY)
				conn->err_code = CO_ER_PRX_TIMEOUT;
			else if (conn->flags & CO_FL_SSL_WAIT_HS)
				conn->err_code = CO_ER_SSL_TIMEOUT;
		}

		prepare_mini_sess_log_prefix(s);
		err_msg = conn_err_code_str(conn);
		if (err_msg)
			send_log(s->fe, level, "%s: %s\n", trash.str, err_msg);
		else
			send_log(s->fe, level, "%s: unknown connection error (code=%d flags=%08x)\n",
				 trash.str, conn->err_code, conn->flags);
	}

	/* kill the connection now */
	conn_force_close(conn);
	conn_free(conn);

	s->fe->feconn--;
	session_store_counters(s);

	if (!(s->listener->options & LI_O_UNLIMITED))
		actconn--;
	jobs--;
	s->listener->nbconn--;
	if (s->listener->state == LI_FULL)
		resume_listener(s->listener);

	/* Dequeues all of the listeners waiting for a resource */
	if (!LIST_ISEMPTY(&global_listener_queue))
		dequeue_all_listeners(&global_listener_queue);

	if (!LIST_ISEMPTY(&s->fe->listener_queue) &&
	    (!s->fe->fe_sps_lim || freq_ctr_remain(&s->fe->fe_sess_per_sec, s->fe->fe_sps_lim, 0) > 0))
		dequeue_all_listeners(&s->fe->listener_queue);

	task_delete(s->task);
	task_free(s->task);
	pool_free2(pool2_session, s);
}

/* Finish initializing a session from a connection, or kills it if the
 * connection shows and error. Returns <0 if the connection was killed.
 */
static int conn_session_complete(struct connection *conn)
{
	struct session *s = conn->owner;

	if (!(conn->flags & CO_FL_ERROR) && (session_complete(s) > 0)) {
		conn->flags &= ~CO_FL_INIT_DATA;
		return 0;
	}

	/* kill the connection now */
	kill_mini_session(s);
	return -1;
}

/* Update an embryonic session status. The connection is killed in case of
 * error, and <0 will be returned. Otherwise it does nothing.
 */
static int conn_session_update(struct connection *conn)
{
	if (conn->flags & CO_FL_ERROR) {
		kill_mini_session(conn->owner);
		return -1;
	}
	return 0;
}

/* Manages embryonic sessions timeout. It is only called when the timeout
 * strikes and performs the required cleanup.
 */
static struct task *expire_mini_session(struct task *t)
{
	struct session *s = t->context;

	if (!(t->state & TASK_WOKEN_TIMER))
		return t;

	kill_mini_session(s);
	return NULL;
}

/* This function is called from the I/O handler which detects the end of
 * handshake, in order to complete initialization of a valid session. It must
 * be called with an embryonic session. It returns a positive value upon
 * success, 0 if the connection can be ignored, or a negative value upon
 * critical failure. The accepted file descriptor is closed if we return <= 0.
 * The client-side end point is assumed to be a connection, whose pointer is
 * taken from s->target which is assumed to be valid. If the function fails,
 * it restores s->target.
 */
int session_complete(struct session *s)
{
	struct listener *l = s->listener;
	struct proxy *p = s->fe;
	struct http_txn *txn;
	struct task *t = s->task;
	struct connection *conn = __objt_conn(s->target);
	int ret;
	int i;

	ret = -1; /* assume unrecoverable error by default */

	/* OK, we're keeping the session, so let's properly initialize the session */
	LIST_ADDQ(&sessions, &s->list);
	LIST_INIT(&s->back_refs);

	s->flags |= SN_INITIALIZED;
	s->unique_id = NULL;

	t->process = l->handler;
	t->context = s;
	t->expire = TICK_ETERNITY;

	/* Note: initially, the session's backend points to the frontend.
	 * This changes later when switching rules are executed or
	 * when the default backend is assigned.
	 */
	s->be  = s->fe;
	s->req = s->rep = NULL; /* will be allocated later */
	s->comp_algo = NULL;

	/* Let's count a session now */
	proxy_inc_fe_sess_ctr(l, p);

	for (i = 0; i < MAX_SESS_STKCTR; i++) {
		void *ptr;

		if (!stkctr_entry(&s->stkctr[i]))
			continue;

		ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_SESS_CNT);
		if (ptr)
			stktable_data_cast(ptr, sess_cnt)++;

		ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_SESS_RATE);
		if (ptr)
			update_freq_ctr_period(&stktable_data_cast(ptr, sess_rate),
					       s->stkctr[i].table->data_arg[STKTABLE_DT_SESS_RATE].u, 1);
	}

	/* this part should be common with other protocols */
	si_reset(&s->si[0], t);
	si_set_state(&s->si[0], SI_ST_EST);

	/* attach the incoming connection to the stream interface now.
	 * We must do that *before* clearing ->target because we need
	 * to keep a pointer to the connection in case we have to call
	 * kill_mini_session().
	 */
	si_attach_conn(&s->si[0], conn);

	if (likely(s->fe->options2 & PR_O2_INDEPSTR))
		s->si[0].flags |= SI_FL_INDEP_STR;

	/* pre-initialize the other side's stream interface to an INIT state. The
	 * callbacks will be initialized before attempting to connect.
	 */
	si_reset(&s->si[1], t);
	si_detach(&s->si[1]);

	if (likely(s->fe->options2 & PR_O2_INDEPSTR))
		s->si[1].flags |= SI_FL_INDEP_STR;

	session_init_srv_conn(s);
	s->target = NULL;
	s->pend_pos = NULL;

	/* init store persistence */
	s->store_count = 0;

	if (unlikely((s->req = pool_alloc2(pool2_channel)) == NULL))
		goto out_free_task; /* no memory */

	if (unlikely((s->req->buf = pool_alloc2(pool2_buffer)) == NULL))
		goto out_free_req; /* no memory */

	if (unlikely((s->rep = pool_alloc2(pool2_channel)) == NULL))
		goto out_free_req_buf; /* no memory */

	if (unlikely((s->rep->buf = pool_alloc2(pool2_buffer)) == NULL))
		goto out_free_rep; /* no memory */

	/* initialize the request buffer */
	s->req->buf->size = global.tune.bufsize;
	channel_init(s->req);
	s->req->prod = &s->si[0];
	s->req->cons = &s->si[1];
	s->si[0].ib = s->si[1].ob = s->req;
	s->req->flags |= CF_READ_ATTACHED; /* the producer is already connected */

	/* activate default analysers enabled for this listener */
	s->req->analysers = l->analysers;

	s->req->wto = TICK_ETERNITY;
	s->req->rto = TICK_ETERNITY;
	s->req->rex = TICK_ETERNITY;
	s->req->wex = TICK_ETERNITY;
	s->req->analyse_exp = TICK_ETERNITY;

	/* initialize response buffer */
	s->rep->buf->size = global.tune.bufsize;
	channel_init(s->rep);
	s->rep->prod = &s->si[1];
	s->rep->cons = &s->si[0];
	s->si[0].ob = s->si[1].ib = s->rep;
	s->rep->analysers = 0;

	if (s->fe->options2 & PR_O2_NODELAY) {
		s->req->flags |= CF_NEVER_WAIT;
		s->rep->flags |= CF_NEVER_WAIT;
	}

	s->rep->rto = TICK_ETERNITY;
	s->rep->wto = TICK_ETERNITY;
	s->rep->rex = TICK_ETERNITY;
	s->rep->wex = TICK_ETERNITY;
	s->rep->analyse_exp = TICK_ETERNITY;

	txn = &s->txn;
	/* Those variables will be checked and freed if non-NULL in
	 * session.c:session_free(). It is important that they are
	 * properly initialized.
	 */
	txn->sessid = NULL;
	txn->srv_cookie = NULL;
	txn->cli_cookie = NULL;
	txn->uri = NULL;
	txn->req.cap = NULL;
	txn->rsp.cap = NULL;
	txn->hdr_idx.v = NULL;
	txn->hdr_idx.size = txn->hdr_idx.used = 0;
	txn->flags = 0;
	txn->req.flags = 0;
	txn->rsp.flags = 0;
	/* the HTTP messages need to know what buffer they're associated with */
	txn->req.chn = s->req;
	txn->rsp.chn = s->rep;

	/* finish initialization of the accepted file descriptor */
	conn_data_want_recv(conn);

	if (p->accept && (ret = p->accept(s)) <= 0) {
		/* Either we had an unrecoverable error (<0) or work is
		 * finished (=0, eg: monitoring), in both situations,
		 * we can release everything and close.
		 */
		goto out_free_rep_buf;
	}

	/* if logs require transport layer information, note it on the connection */
	if (s->logs.logwait & LW_XPRT)
		conn->flags |= CO_FL_XPRT_TRACKED;

	/* we want the connection handler to notify the stream interface about updates. */
	conn->flags |= CO_FL_WAKE_DATA;

	/* it is important not to call the wakeup function directly but to
	 * pass through task_wakeup(), because this one knows how to apply
	 * priorities to tasks.
	 */
	task_wakeup(t, TASK_WOKEN_INIT);
	return 1;

	/* Error unrolling */
 out_free_rep_buf:
	pool_free2(pool2_buffer, s->rep->buf);
 out_free_rep:
	pool_free2(pool2_channel, s->rep);
 out_free_req_buf:
	pool_free2(pool2_buffer, s->req->buf);
 out_free_req:
	pool_free2(pool2_channel, s->req);
 out_free_task:
	/* and restore the connection pointer in case we destroyed it,
	 * because kill_mini_session() will need it.
	 */
	LIST_DEL(&s->list);
	s->target = &conn->obj_type;
	return ret;
}

/*
 * frees  the context associated to a session. It must have been removed first.
 */
static void session_free(struct session *s)
{
	struct http_txn *txn = &s->txn;
	struct proxy *fe = s->fe;
	struct bref *bref, *back;
	struct connection *cli_conn = objt_conn(s->si[0].end);
	int i;

	if (s->pend_pos)
		pendconn_free(s->pend_pos);

	if (objt_server(s->target)) { /* there may be requests left pending in queue */
		if (s->flags & SN_CURR_SESS) {
			s->flags &= ~SN_CURR_SESS;
			objt_server(s->target)->cur_sess--;
		}
		if (may_dequeue_tasks(objt_server(s->target), s->be))
			process_srv_queue(objt_server(s->target));
	}

	if (unlikely(s->srv_conn)) {
		/* the session still has a reserved slot on a server, but
		 * it should normally be only the same as the one above,
		 * so this should not happen in fact.
		 */
		sess_change_server(s, NULL);
	}

	if (s->req->pipe)
		put_pipe(s->req->pipe);

	if (s->rep->pipe)
		put_pipe(s->rep->pipe);

	pool_free2(pool2_buffer, s->req->buf);
	pool_free2(pool2_buffer, s->rep->buf);

	pool_free2(pool2_channel, s->req);
	pool_free2(pool2_channel, s->rep);

	http_end_txn(s);

	/* ensure the client-side transport layer is destroyed */
	if (cli_conn)
		conn_force_close(cli_conn);

	for (i = 0; i < s->store_count; i++) {
		if (!s->store[i].ts)
			continue;
		stksess_free(s->store[i].table, s->store[i].ts);
		s->store[i].ts = NULL;
	}

	pool_free2(pool2_hdr_idx, txn->hdr_idx.v);
	if (fe) {
		pool_free2(fe->rsp_cap_pool, txn->rsp.cap);
		pool_free2(fe->req_cap_pool, txn->req.cap);
	}

	session_store_counters(s);

	list_for_each_entry_safe(bref, back, &s->back_refs, users) {
		/* we have to unlink all watchers. We must not relink them if
		 * this session was the last one in the list.
		 */
		LIST_DEL(&bref->users);
		LIST_INIT(&bref->users);
		if (s->list.n != &sessions)
			LIST_ADDQ(&LIST_ELEM(s->list.n, struct session *, list)->back_refs, &bref->users);
		bref->ref = s->list.n;
	}
	LIST_DEL(&s->list);
	si_release_endpoint(&s->si[1]);
	si_release_endpoint(&s->si[0]);
	pool_free2(pool2_session, s);

	/* We may want to free the maximum amount of pools if the proxy is stopping */
	if (fe && unlikely(fe->state == PR_STSTOPPED)) {
		pool_flush2(pool2_buffer);
		pool_flush2(pool2_channel);
		pool_flush2(pool2_hdr_idx);
		pool_flush2(pool2_requri);
		pool_flush2(pool2_capture);
		pool_flush2(pool2_session);
		pool_flush2(fe->req_cap_pool);
		pool_flush2(fe->rsp_cap_pool);
	}
}


/* perform minimal intializations, report 0 in case of error, 1 if OK. */
int init_session()
{
	LIST_INIT(&sessions);
	pool2_session = create_pool("session", sizeof(struct session), MEM_F_SHARED);
	return pool2_session != NULL;
}

void session_process_counters(struct session *s)
{
	unsigned long long bytes;
	void *ptr;
	int i;

	if (s->req) {
		bytes = s->req->total - s->logs.bytes_in;
		s->logs.bytes_in = s->req->total;
		if (bytes) {
			s->fe->fe_counters.bytes_in += bytes;

			s->be->be_counters.bytes_in += bytes;

			if (objt_server(s->target))
				objt_server(s->target)->counters.bytes_in += bytes;

			if (s->listener && s->listener->counters)
				s->listener->counters->bytes_in += bytes;

			for (i = 0; i < MAX_SESS_STKCTR; i++) {
				if (!stkctr_entry(&s->stkctr[i]))
					continue;

				ptr = stktable_data_ptr(s->stkctr[i].table,
				                        stkctr_entry(&s->stkctr[i]),
				                        STKTABLE_DT_BYTES_IN_CNT);
				if (ptr)
					stktable_data_cast(ptr, bytes_in_cnt) += bytes;

				ptr = stktable_data_ptr(s->stkctr[i].table,
				                        stkctr_entry(&s->stkctr[i]),
				                        STKTABLE_DT_BYTES_IN_RATE);
				if (ptr)
					update_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate),
					                       s->stkctr[i].table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes);
			}
		}
	}

	if (s->rep) {
		bytes = s->rep->total - s->logs.bytes_out;
		s->logs.bytes_out = s->rep->total;
		if (bytes) {
			s->fe->fe_counters.bytes_out += bytes;

			s->be->be_counters.bytes_out += bytes;

			if (objt_server(s->target))
				objt_server(s->target)->counters.bytes_out += bytes;

			if (s->listener && s->listener->counters)
				s->listener->counters->bytes_out += bytes;

			for (i = 0; i < MAX_SESS_STKCTR; i++) {
				if (!stkctr_entry(&s->stkctr[i]))
					continue;

				ptr = stktable_data_ptr(s->stkctr[i].table,
				                        stkctr_entry(&s->stkctr[i]),
				                        STKTABLE_DT_BYTES_OUT_CNT);
				if (ptr)
					stktable_data_cast(ptr, bytes_out_cnt) += bytes;

				ptr = stktable_data_ptr(s->stkctr[i].table,
				                        stkctr_entry(&s->stkctr[i]),
				                        STKTABLE_DT_BYTES_OUT_RATE);
				if (ptr)
					update_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate),
					                       s->stkctr[i].table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes);
			}
		}
	}
}

/* This function is called with (si->state == SI_ST_CON) meaning that a
 * connection was attempted and that the file descriptor is already allocated.
 * We must check for establishment, error and abort. Possible output states
 * are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and
 * SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER,
 * otherwise 1. This only works with connection-based sessions.
 */
static int sess_update_st_con_tcp(struct session *s, struct stream_interface *si)
{
	struct channel *req = si->ob;
	struct channel *rep = si->ib;
	struct connection *srv_conn = __objt_conn(si->end);

	/* If we got an error, or if nothing happened and the connection timed
	 * out, we must give up. The CER state handler will take care of retry
	 * attempts and error reports.
	 */
	if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) {
		if (unlikely(si->ob->flags & CF_WRITE_PARTIAL)) {
			/* Some data were sent past the connection establishment,
			 * so we need to pretend we're established to log correctly
			 * and let later states handle the failure.
			 */
			si->state    = SI_ST_EST;
			si->err_type = SI_ET_DATA_ERR;
			si->ib->flags |= CF_READ_ERROR | CF_WRITE_ERROR;
			return 1;
		}
		si->exp   = TICK_ETERNITY;
		si->state = SI_ST_CER;

		conn_force_close(srv_conn);

		if (si->err_type)
			return 0;

		if (si->flags & SI_FL_ERR)
			si->err_type = SI_ET_CONN_ERR;
		else
			si->err_type = SI_ET_CONN_TO;
		return 0;
	}

	/* OK, maybe we want to abort */
	if (!(req->flags & CF_WRITE_PARTIAL) &&
	    unlikely((rep->flags & CF_SHUTW) ||
		     ((req->flags & CF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */
		      ((!(req->flags & CF_WRITE_ACTIVITY) && channel_is_empty(req)) ||
		       s->be->options & PR_O_ABRT_CLOSE)))) {
		/* give up */
		si_shutw(si);
		si->err_type |= SI_ET_CONN_ABRT;
		if (s->srv_error)
			s->srv_error(s, si);
		return 1;
	}

	/* we need to wait a bit more if there was no activity either */
	if (!(req->flags & CF_WRITE_ACTIVITY))
		return 1;

	/* OK, this means that a connection succeeded. The caller will be
	 * responsible for handling the transition from CON to EST.
	 */
	si->state    = SI_ST_EST;
	si->err_type = SI_ET_NONE;
	return 1;
}

/* This function is called with (si->state == SI_ST_CER) meaning that a
 * previous connection attempt has failed and that the file descriptor
 * has already been released. Possible causes include asynchronous error
 * notification and time out. Possible output states are SI_ST_CLO when
 * retries are exhausted, SI_ST_TAR when a delay is wanted before a new
 * connection attempt, SI_ST_ASS when it's wise to retry on the same server,
 * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are
 * marked as in error state. It returns 0.
 */
static int sess_update_st_cer(struct session *s, struct stream_interface *si)
{
	/* we probably have to release last session from the server */
	if (objt_server(s->target)) {
		health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR);

		if (s->flags & SN_CURR_SESS) {
			s->flags &= ~SN_CURR_SESS;
			objt_server(s->target)->cur_sess--;
		}
	}

	/* ensure that we have enough retries left */
	si->conn_retries--;
	if (si->conn_retries < 0) {
		if (!si->err_type) {
			si->err_type = SI_ET_CONN_ERR;
		}

		if (objt_server(s->target))
			objt_server(s->target)->counters.failed_conns++;
		s->be->be_counters.failed_conns++;
		sess_change_server(s, NULL);
		if (may_dequeue_tasks(objt_server(s->target), s->be))
			process_srv_queue(objt_server(s->target));

		/* shutw is enough so stop a connecting socket */
		si_shutw(si);
		si->ob->flags |= CF_WRITE_ERROR;
		si->ib->flags |= CF_READ_ERROR;

		si->state = SI_ST_CLO;
		if (s->srv_error)
			s->srv_error(s, si);
		return 0;
	}

	/* If the "redispatch" option is set on the backend, we are allowed to
	 * retry on another server for the last retry. In order to achieve this,
	 * we must mark the session unassigned, and eventually clear the DIRECT
	 * bit to ignore any persistence cookie. We won't count a retry nor a
	 * redispatch yet, because this will depend on what server is selected.
	 * If the connection is not persistent, the balancing algorithm is not
	 * determinist (round robin) and there is more than one active server,
	 * we accept to perform an immediate redispatch without waiting since
	 * we don't care about this particular server.
	 */
	if (objt_server(s->target) &&
	    (si->conn_retries == 0 ||
	     (!(s->flags & SN_DIRECT) && s->be->srv_act > 1 &&
	      ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR))) &&
	    s->be->options & PR_O_REDISP && !(s->flags & SN_FORCE_PRST)) {
		sess_change_server(s, NULL);
		if (may_dequeue_tasks(objt_server(s->target), s->be))
			process_srv_queue(objt_server(s->target));

		s->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
		si->state = SI_ST_REQ;
	} else {
		if (objt_server(s->target))
			objt_server(s->target)->counters.retries++;
		s->be->be_counters.retries++;
		si->state = SI_ST_ASS;
	}

	if (si->flags & SI_FL_ERR) {
		/* The error was an asynchronous connection error, and we will
		 * likely have to retry connecting to the same server, most
		 * likely leading to the same result. To avoid this, we wait
		 * MIN(one second, connect timeout) before retrying.
		 */

		int delay = 1000;

		if (s->be->timeout.connect && s->be->timeout.connect < delay)
			delay = s->be->timeout.connect;

		if (!si->err_type)
			si->err_type = SI_ET_CONN_ERR;

		/* only wait when we're retrying on the same server */
		if (si->state == SI_ST_ASS ||
		    (s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR ||
		    (s->be->srv_act <= 1)) {
			si->state = SI_ST_TAR;
			si->exp = tick_add(now_ms, MS_TO_TICKS(delay));
		}
		return 0;
	}
	return 0;
}

/*
 * This function handles the transition between the SI_ST_CON state and the
 * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or
 * SI_ST_INI) to SI_ST_EST, but only when a ->proto is defined.
 */
static void sess_establish(struct session *s, struct stream_interface *si)
{
	struct channel *req = si->ob;
	struct channel *rep = si->ib;

	/* First, centralize the timers information */
	s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
	si->exp      = TICK_ETERNITY;

	if (objt_server(s->target))
		health_adjust(objt_server(s->target), HANA_STATUS_L4_OK);

	if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
		/* if the user wants to log as soon as possible, without counting
		 * bytes from the server, then this is the right moment. */
		if (!LIST_ISEMPTY(&s->fe->logformat) && !(s->logs.logwait & LW_BYTES)) {
			s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
			s->do_log(s);
		}
	}
	else {
		s->txn.rsp.msg_state = HTTP_MSG_RPBEFORE;
		rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */
	}

	rep->analysers |= s->fe->fe_rsp_ana | s->be->be_rsp_ana;
	rep->flags |= CF_READ_ATTACHED; /* producer is now attached */
	if (req->flags & CF_WAKE_CONNECT) {
		req->flags |= CF_WAKE_ONCE;
		req->flags &= ~CF_WAKE_CONNECT;
	}
	if (objt_conn(si->end)) {
		/* real connections have timeouts */
		req->wto = s->be->timeout.server;
		rep->rto = s->be->timeout.server;
	}
	req->wex = TICK_ETERNITY;
}

/* Update stream interface status for input states SI_ST_ASS, SI_ST_QUE, SI_ST_TAR.
 * Other input states are simply ignored.
 * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON
 * and SI_ST_EST. Flags must have previously been updated for timeouts and other
 * conditions.
 */
static void sess_update_stream_int(struct session *s, struct stream_interface *si)
{
	struct server *srv = objt_server(s->target);

	DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n",
		now_ms, __FUNCTION__,
		s,
		s->req, s->rep,
		s->req->rex, s->rep->wex,
		s->req->flags, s->rep->flags,
		s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state);

	if (si->state == SI_ST_ASS) {
		/* Server assigned to connection request, we have to try to connect now */
		int conn_err;

		conn_err = connect_server(s);
		srv = objt_server(s->target);

		if (conn_err == SN_ERR_NONE) {
			/* state = SI_ST_CON or SI_ST_EST now */
			if (srv)
				srv_inc_sess_ctr(srv);
			if (srv)
				srv_set_sess_last(srv);
			return;
		}

		/* We have received a synchronous error. We might have to
		 * abort, retry immediately or redispatch.
		 */
		if (conn_err == SN_ERR_INTERNAL) {
			if (!si->err_type) {
				si->err_type = SI_ET_CONN_OTHER;
			}

			if (srv)
				srv_inc_sess_ctr(srv);
			if (srv)
				srv_set_sess_last(srv);
			if (srv)
				srv->counters.failed_conns++;
			s->be->be_counters.failed_conns++;

			/* release other sessions waiting for this server */
			sess_change_server(s, NULL);
			if (may_dequeue_tasks(srv, s->be))
				process_srv_queue(srv);

			/* Failed and not retryable. */
			si_shutr(si);
			si_shutw(si);
			si->ob->flags |= CF_WRITE_ERROR;

			s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);

			/* no session was ever accounted for this server */
			si->state = SI_ST_CLO;
			if (s->srv_error)
				s->srv_error(s, si);
			return;
		}

		/* We are facing a retryable error, but we don't want to run a
		 * turn-around now, as the problem is likely a source port
		 * allocation problem, so we want to retry now.
		 */
		si->state = SI_ST_CER;
		si->flags &= ~SI_FL_ERR;
		sess_update_st_cer(s, si);
		/* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */
		return;
	}
	else if (si->state == SI_ST_QUE) {
		/* connection request was queued, check for any update */
		if (!s->pend_pos) {
			/* The connection is not in the queue anymore. Either
			 * we have a server connection slot available and we
			 * go directly to the assigned state, or we need to
			 * load-balance first and go to the INI state.
			 */
			si->exp = TICK_ETERNITY;
			if (unlikely(!(s->flags & SN_ASSIGNED)))
				si->state = SI_ST_REQ;
			else {
				s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
				si->state = SI_ST_ASS;
			}
			return;
		}

		/* Connection request still in queue... */
		if (si->flags & SI_FL_EXP) {
			/* ... and timeout expired */
			si->exp = TICK_ETERNITY;
			s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
			if (srv)
				srv->counters.failed_conns++;
			s->be->be_counters.failed_conns++;
			si_shutr(si);
			si_shutw(si);
			si->ob->flags |= CF_WRITE_TIMEOUT;
			if (!si->err_type)
				si->err_type = SI_ET_QUEUE_TO;
			si->state = SI_ST_CLO;
			if (s->srv_error)
				s->srv_error(s, si);
			return;
		}

		/* Connection remains in queue, check if we have to abort it */
		if ((si->ob->flags & (CF_READ_ERROR)) ||
		    ((si->ob->flags & CF_SHUTW_NOW) &&   /* empty and client aborted */
		     (channel_is_empty(si->ob) || s->be->options & PR_O_ABRT_CLOSE))) {
			/* give up */
			si->exp = TICK_ETERNITY;
			s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
			si_shutr(si);
			si_shutw(si);
			si->err_type |= SI_ET_QUEUE_ABRT;
			si->state = SI_ST_CLO;
			if (s->srv_error)
				s->srv_error(s, si);
			return;
		}

		/* Nothing changed */
		return;
	}
	else if (si->state == SI_ST_TAR) {
		/* Connection request might be aborted */
		if ((si->ob->flags & (CF_READ_ERROR)) ||
		    ((si->ob->flags & CF_SHUTW_NOW) &&  /* empty and client aborted */
		     (channel_is_empty(si->ob) || s->be->options & PR_O_ABRT_CLOSE))) {
			/* give up */
			si->exp = TICK_ETERNITY;
			si_shutr(si);
			si_shutw(si);
			si->err_type |= SI_ET_CONN_ABRT;
			si->state = SI_ST_CLO;
			if (s->srv_error)
				s->srv_error(s, si);
			return;
		}

		if (!(si->flags & SI_FL_EXP))
			return;  /* still in turn-around */

		si->exp = TICK_ETERNITY;

		/* we keep trying on the same server as long as the session is
		 * marked "assigned".
		 * FIXME: Should we force a redispatch attempt when the server is down ?
		 */
		if (s->flags & SN_ASSIGNED)
			si->state = SI_ST_ASS;
		else
			si->state = SI_ST_REQ;
		return;
	}
}

/* Set correct session termination flags in case no analyser has done it. It
 * also counts a failed request if the server state has not reached the request
 * stage.
 */
static void sess_set_term_flags(struct session *s)
{
	if (!(s->flags & SN_FINST_MASK)) {
		if (s->si[1].state < SI_ST_REQ) {

			s->fe->fe_counters.failed_req++;
			if (s->listener->counters)
				s->listener->counters->failed_req++;

			s->flags |= SN_FINST_R;
		}
		else if (s->si[1].state == SI_ST_QUE)
			s->flags |= SN_FINST_Q;
		else if (s->si[1].state < SI_ST_EST)
			s->flags |= SN_FINST_C;
		else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST)
			s->flags |= SN_FINST_D;
		else
			s->flags |= SN_FINST_L;
	}
}

/* This function initiates a server connection request on a stream interface
 * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for
 * a real connection to a server, indicating that a server has been assigned,
 * or SI_ST_EST for a successful connection to an applet. It may also return
 * SI_ST_QUE, or SI_ST_CLO upon error.
 */
static void sess_prepare_conn_req(struct session *s, struct stream_interface *si)
{
	DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n",
		now_ms, __FUNCTION__,
		s,
		s->req, s->rep,
		s->req->rex, s->rep->wex,
		s->req->flags, s->rep->flags,
		s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state);

	if (si->state != SI_ST_REQ)
		return;

	if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) {
		/* the applet directly goes to the EST state */
		struct appctx *appctx = objt_appctx(si->end);

		if (!appctx || appctx->applet != __objt_applet(s->target))
			appctx = stream_int_register_handler(si, objt_applet(s->target));

		if (!appctx) {
			/* No more memory, let's immediately abort. Force the
			 * error code to ignore the ERR_LOCAL which is not a
			 * real error.
			 */
			s->flags &= ~(SN_ERR_MASK | SN_FINST_MASK);

			si_shutr(si);
			si_shutw(si);
			si->ob->flags |= CF_WRITE_ERROR;
			si->err_type = SI_ET_CONN_RES;
			si->state = SI_ST_CLO;
			if (s->srv_error)
				s->srv_error(s, si);
			return;
		}

		s->logs.t_queue   = tv_ms_elapsed(&s->logs.tv_accept, &now);
		si->state         = SI_ST_EST;
		si->err_type      = SI_ET_NONE;
		be_set_sess_last(s->be);
		/* let sess_establish() finish the job */
		return;
	}

	/* Try to assign a server */
	if (srv_redispatch_connect(s) != 0) {
		/* We did not get a server. Either we queued the
		 * connection request, or we encountered an error.
		 */
		if (si->state == SI_ST_QUE)
			return;

		/* we did not get any server, let's check the cause */
		si_shutr(si);
		si_shutw(si);
		si->ob->flags |= CF_WRITE_ERROR;
		if (!si->err_type)
			si->err_type = SI_ET_CONN_OTHER;
		si->state = SI_ST_CLO;
		if (s->srv_error)
			s->srv_error(s, si);
		return;
	}

	/* The server is assigned */
	s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
	si->state = SI_ST_ASS;
	be_set_sess_last(s->be);
}

/* This stream analyser checks the switching rules and changes the backend
 * if appropriate. The default_backend rule is also considered, then the
 * target backend's forced persistence rules are also evaluated last if any.
 * It returns 1 if the processing can continue on next analysers, or zero if it
 * either needs more data or wants to immediately abort the request.
 */
static int process_switching_rules(struct session *s, struct channel *req, int an_bit)
{
	struct persist_rule *prst_rule;

	req->analysers &= ~an_bit;
	req->analyse_exp = TICK_ETERNITY;

	DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
		now_ms, __FUNCTION__,
		s,
		req,
		req->rex, req->wex,
		req->flags,
		req->buf->i,
		req->analysers);

	/* now check whether we have some switching rules for this request */
	if (!(s->flags & SN_BE_ASSIGNED)) {
		struct switching_rule *rule;

		list_for_each_entry(rule, &s->fe->switching_rules, list) {
			int ret = 1;

			if (rule->cond) {
				ret = acl_exec_cond(rule->cond, s->fe, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
				ret = acl_pass(ret);
				if (rule->cond->pol == ACL_COND_UNLESS)
					ret = !ret;
			}

			if (ret) {
				/* If the backend name is dynamic, try to resolve the name.
				 * If we can't resolve the name, or if any error occurs, break
				 * the loop and fallback to the default backend.
				 */
				struct proxy *backend;

				if (rule->dynamic) {
					struct chunk *tmp = get_trash_chunk();
					if (!build_logline(s, tmp->str, tmp->size, &rule->be.expr))
						break;
					backend = findproxy(tmp->str, PR_CAP_BE);
					if (!backend)
						break;
				}
				else
					backend = rule->be.backend;

				if (!session_set_backend(s, backend))
					goto sw_failed;
				break;
			}
		}

		/* To ensure correct connection accounting on the backend, we
		 * have to assign one if it was not set (eg: a listen). This
		 * measure also takes care of correctly setting the default
		 * backend if any.
		 */
		if (!(s->flags & SN_BE_ASSIGNED))
			if (!session_set_backend(s, s->fe->defbe.be ? s->fe->defbe.be : s->be))
				goto sw_failed;
	}

	/* we don't want to run the TCP or HTTP filters again if the backend has not changed */
	if (s->fe == s->be) {
		s->req->analysers &= ~AN_REQ_INSPECT_BE;
		s->req->analysers &= ~AN_REQ_HTTP_PROCESS_BE;
	}

	/* as soon as we know the backend, we must check if we have a matching forced or ignored
	 * persistence rule, and report that in the session.
	 */
	list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
		int ret = 1;

		if (prst_rule->cond) {
	                ret = acl_exec_cond(prst_rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
			ret = acl_pass(ret);
			if (prst_rule->cond->pol == ACL_COND_UNLESS)
				ret = !ret;
		}

		if (ret) {
			/* no rule, or the rule matches */
			if (prst_rule->type == PERSIST_TYPE_FORCE) {
				s->flags |= SN_FORCE_PRST;
			} else {
				s->flags |= SN_IGNORE_PRST;
			}
			break;
		}
	}

	return 1;

 sw_failed:
	/* immediately abort this request in case of allocation failure */
	channel_abort(s->req);
	channel_abort(s->rep);

	if (!(s->flags & SN_ERR_MASK))
		s->flags |= SN_ERR_RESOURCE;
	if (!(s->flags & SN_FINST_MASK))
		s->flags |= SN_FINST_R;

	s->txn.status = 500;
	s->req->analysers = 0;
	s->req->analyse_exp = TICK_ETERNITY;
	return 0;
}

/* This stream analyser works on a request. It applies all use-server rules on
 * it then returns 1. The data must already be present in the buffer otherwise
 * they won't match. It always returns 1.
 */
static int process_server_rules(struct session *s, struct channel *req, int an_bit)
{
	struct proxy *px = s->be;
	struct server_rule *rule;

	DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
		now_ms, __FUNCTION__,
		s,
		req,
		req->rex, req->wex,
		req->flags,
		req->buf->i + req->buf->o,
		req->analysers);

	if (!(s->flags & SN_ASSIGNED)) {
		list_for_each_entry(rule, &px->server_rules, list) {
			int ret;

			ret = acl_exec_cond(rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
			ret = acl_pass(ret);
			if (rule->cond->pol == ACL_COND_UNLESS)
				ret = !ret;

			if (ret) {
				struct server *srv = rule->srv.ptr;

				if ((srv->state != SRV_ST_STOPPED) ||
				    (px->options & PR_O_PERSIST) ||
				    (s->flags & SN_FORCE_PRST)) {
					s->flags |= SN_DIRECT | SN_ASSIGNED;
					s->target = &srv->obj_type;
					break;
				}
				/* if the server is not UP, let's go on with next rules
				 * just in case another one is suited.
				 */
			}
		}
	}

	req->analysers &= ~an_bit;
	req->analyse_exp = TICK_ETERNITY;
	return 1;
}

/* This stream analyser works on a request. It applies all sticking rules on
 * it then returns 1. The data must already be present in the buffer otherwise
 * they won't match. It always returns 1.
 */
static int process_sticking_rules(struct session *s, struct channel *req, int an_bit)
{
	struct proxy    *px   = s->be;
	struct sticking_rule  *rule;

	DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
		now_ms, __FUNCTION__,
		s,
		req,
		req->rex, req->wex,
		req->flags,
		req->buf->i,
		req->analysers);

	list_for_each_entry(rule, &px->sticking_rules, list) {
		int ret = 1 ;
		int i;

		/* Only the first stick store-request of each table is applied
		 * and other ones are ignored. The purpose is to allow complex
		 * configurations which look for multiple entries by decreasing
		 * order of precision and to stop at the first which matches.
		 * An example could be a store of the IP address from an HTTP
		 * header first, then from the source if not found.
		 */
		for (i = 0; i < s->store_count; i++) {
			if (rule->table.t == s->store[i].table)
				break;
		}

		if (i !=  s->store_count)
			continue;

		if (rule->cond) {
	                ret = acl_exec_cond(rule->cond, px, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
			ret = acl_pass(ret);
			if (rule->cond->pol == ACL_COND_UNLESS)
				ret = !ret;
		}

		if (ret) {
			struct stktable_key *key;

			key = stktable_fetch_key(rule->table.t, px, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
			if (!key)
				continue;

			if (rule->flags & STK_IS_MATCH) {
				struct stksess *ts;

				if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
					if (!(s->flags & SN_ASSIGNED)) {
						struct eb32_node *node;
						void *ptr;

						/* srv found in table */
						ptr = stktable_data_ptr(rule->table.t, ts, STKTABLE_DT_SERVER_ID);
						node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id));
						if (node) {
							struct server *srv;

							srv = container_of(node, struct server, conf.id);
							if ((srv->state != SRV_ST_STOPPED) ||
							    (px->options & PR_O_PERSIST) ||
							    (s->flags & SN_FORCE_PRST)) {
								s->flags |= SN_DIRECT | SN_ASSIGNED;
								s->target = &srv->obj_type;
							}
						}
					}
					stktable_touch(rule->table.t, ts, 1);
				}
			}
			if (rule->flags & STK_IS_STORE) {
				if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
					struct stksess *ts;

					ts = stksess_new(rule->table.t, key);
					if (ts) {
						s->store[s->store_count].table = rule->table.t;
						s->store[s->store_count++].ts = ts;
					}
				}
			}
		}
	}

	req->analysers &= ~an_bit;
	req->analyse_exp = TICK_ETERNITY;
	return 1;
}

/* This stream analyser works on a response. It applies all store rules on it
 * then returns 1. The data must already be present in the buffer otherwise
 * they won't match. It always returns 1.
 */
static int process_store_rules(struct session *s, struct channel *rep, int an_bit)
{
	struct proxy    *px   = s->be;
	struct sticking_rule  *rule;
	int i;
	int nbreq = s->store_count;

	DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
		now_ms, __FUNCTION__,
		s,
		rep,
		rep->rex, rep->wex,
		rep->flags,
		rep->buf->i,
		rep->analysers);

	list_for_each_entry(rule, &px->storersp_rules, list) {
		int ret = 1 ;

		/* Only the first stick store-response of each table is applied
		 * and other ones are ignored. The purpose is to allow complex
		 * configurations which look for multiple entries by decreasing
		 * order of precision and to stop at the first which matches.
		 * An example could be a store of a set-cookie value, with a
		 * fallback to a parameter found in a 302 redirect.
		 *
		 * The store-response rules are not allowed to override the
		 * store-request rules for the same table, but they may coexist.
		 * Thus we can have up to one store-request entry and one store-
		 * response entry for the same table at any time.
		 */
		for (i = nbreq; i < s->store_count; i++) {
			if (rule->table.t == s->store[i].table)
				break;
		}

		/* skip existing entries for this table */
		if (i < s->store_count)
			continue;

		if (rule->cond) {
	                ret = acl_exec_cond(rule->cond, px, s, &s->txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
	                ret = acl_pass(ret);
			if (rule->cond->pol == ACL_COND_UNLESS)
				ret = !ret;
		}

		if (ret) {
			struct stktable_key *key;

			key = stktable_fetch_key(rule->table.t, px, s, &s->txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
			if (!key)
				continue;

			if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
				struct stksess *ts;

				ts = stksess_new(rule->table.t, key);
				if (ts) {
					s->store[s->store_count].table = rule->table.t;
					s->store[s->store_count++].ts = ts;
				}
			}
		}
	}

	/* process store request and store response */
	for (i = 0; i < s->store_count; i++) {
		struct stksess *ts;
		void *ptr;

		if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) {
			stksess_free(s->store[i].table, s->store[i].ts);
			s->store[i].ts = NULL;
			continue;
		}

		ts = stktable_lookup(s->store[i].table, s->store[i].ts);
		if (ts) {
			/* the entry already existed, we can free ours */
			stktable_touch(s->store[i].table, ts, 1);
			stksess_free(s->store[i].table, s->store[i].ts);
		}
		else
			ts = stktable_store(s->store[i].table, s->store[i].ts, 1);

		s->store[i].ts = NULL;
		ptr = stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID);
		stktable_data_cast(ptr, server_id) = objt_server(s->target)->puid;
	}
	s->store_count = 0; /* everything is stored */

	rep->analysers &= ~an_bit;
	rep->analyse_exp = TICK_ETERNITY;
	return 1;
}

/* This macro is very specific to the function below. See the comments in
 * process_session() below to understand the logic and the tests.
 */
#define UPDATE_ANALYSERS(real, list, back, flag) {			\
		list = (((list) & ~(flag)) | ~(back)) & (real);		\
		back = real;						\
		if (!(list))						\
			break;						\
		if (((list) ^ ((list) & ((list) - 1))) < (flag))	\
			continue;					\
}

/* Processes the client, server, request and response jobs of a session task,
 * then puts it back to the wait queue in a clean state, or cleans up its
 * resources if it must be deleted. Returns in <next> the date the task wants
 * to be woken up, or TICK_ETERNITY. In order not to call all functions for
 * nothing too many times, the request and response buffers flags are monitored
 * and each function is called only if at least another function has changed at
 * least one flag it is interested in.
 */
struct task *process_session(struct task *t)
{
	struct server *srv;
	struct session *s = t->context;
	unsigned int rqf_last, rpf_last;
	unsigned int rq_prod_last, rq_cons_last;
	unsigned int rp_cons_last, rp_prod_last;
	unsigned int req_ana_back;

	//DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
	//        s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s->rep->flags);

	/* this data may be no longer valid, clear it */
	memset(&s->txn.auth, 0, sizeof(s->txn.auth));

	/* This flag must explicitly be set every time */
	s->req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
	s->rep->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);

	/* Keep a copy of req/rep flags so that we can detect shutdowns */
	rqf_last = s->req->flags & ~CF_MASK_ANALYSER;
	rpf_last = s->rep->flags & ~CF_MASK_ANALYSER;

	/* we don't want the stream interface functions to recursively wake us up */
	if (s->req->prod->owner == t)
		s->req->prod->flags |= SI_FL_DONT_WAKE;
	if (s->req->cons->owner == t)
		s->req->cons->flags |= SI_FL_DONT_WAKE;

	/* 1a: Check for low level timeouts if needed. We just set a flag on
	 * stream interfaces when their timeouts have expired.
	 */
	if (unlikely(t->state & TASK_WOKEN_TIMER)) {
		stream_int_check_timeouts(&s->si[0]);
		stream_int_check_timeouts(&s->si[1]);

		/* check channel timeouts, and close the corresponding stream interfaces
		 * for future reads or writes. Note: this will also concern upper layers
		 * but we do not touch any other flag. We must be careful and correctly
		 * detect state changes when calling them.
		 */

		channel_check_timeouts(s->req);

		if (unlikely((s->req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
			s->req->cons->flags |= SI_FL_NOLINGER;
			si_shutw(s->req->cons);
		}

		if (unlikely((s->req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
			if (s->req->prod->flags & SI_FL_NOHALF)
				s->req->prod->flags |= SI_FL_NOLINGER;
			si_shutr(s->req->prod);
		}

		channel_check_timeouts(s->rep);

		if (unlikely((s->rep->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
			s->rep->cons->flags |= SI_FL_NOLINGER;
			si_shutw(s->rep->cons);
		}

		if (unlikely((s->rep->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
			if (s->rep->prod->flags & SI_FL_NOHALF)
				s->rep->prod->flags |= SI_FL_NOLINGER;
			si_shutr(s->rep->prod);
		}

		/* Once in a while we're woken up because the task expires. But
		 * this does not necessarily mean that a timeout has been reached.
		 * So let's not run a whole session processing if only an expiration
		 * timeout needs to be refreshed.
		 */
		if (!((s->req->flags | s->rep->flags) &
		      (CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW|
		       CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) &&
		    !((s->si[0].flags | s->si[1].flags) & (SI_FL_EXP|SI_FL_ERR)) &&
		    ((t->state & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER))
			goto update_exp_and_leave;
	}

	/* 1b: check for low-level errors reported at the stream interface.
	 * First we check if it's a retryable error (in which case we don't
	 * want to tell the buffer). Otherwise we report the error one level
	 * upper by setting flags into the buffers. Note that the side towards
	 * the client cannot have connect (hence retryable) errors. Also, the
	 * connection setup code must be able to deal with any type of abort.
	 */
	srv = objt_server(s->target);
	if (unlikely(s->si[0].flags & SI_FL_ERR)) {
		if (s->si[0].state == SI_ST_EST || s->si[0].state == SI_ST_DIS) {
			si_shutr(&s->si[0]);
			si_shutw(&s->si[0]);
			stream_int_report_error(&s->si[0]);
			if (!(s->req->analysers) && !(s->rep->analysers)) {
				s->be->be_counters.cli_aborts++;
				s->fe->fe_counters.cli_aborts++;
				if (srv)
					srv->counters.cli_aborts++;
				if (!(s->flags & SN_ERR_MASK))
					s->flags |= SN_ERR_CLICL;
				if (!(s->flags & SN_FINST_MASK))
					s->flags |= SN_FINST_D;
			}
		}
	}

	if (unlikely(s->si[1].flags & SI_FL_ERR)) {
		if (s->si[1].state == SI_ST_EST || s->si[1].state == SI_ST_DIS) {
			si_shutr(&s->si[1]);
			si_shutw(&s->si[1]);
			stream_int_report_error(&s->si[1]);
			s->be->be_counters.failed_resp++;
			if (srv)
				srv->counters.failed_resp++;
			if (!(s->req->analysers) && !(s->rep->analysers)) {
				s->be->be_counters.srv_aborts++;
				s->fe->fe_counters.srv_aborts++;
				if (srv)
					srv->counters.srv_aborts++;
				if (!(s->flags & SN_ERR_MASK))
					s->flags |= SN_ERR_SRVCL;
				if (!(s->flags & SN_FINST_MASK))
					s->flags |= SN_FINST_D;
			}
		}
		/* note: maybe we should process connection errors here ? */
	}

	if (s->si[1].state == SI_ST_CON) {
		/* we were trying to establish a connection on the server side,
		 * maybe it succeeded, maybe it failed, maybe we timed out, ...
		 */
		if (unlikely(!sess_update_st_con_tcp(s, &s->si[1])))
			sess_update_st_cer(s, &s->si[1]);
		else if (s->si[1].state == SI_ST_EST)
			sess_establish(s, &s->si[1]);

		/* state is now one of SI_ST_CON (still in progress), SI_ST_EST
		 * (established), SI_ST_DIS (abort), SI_ST_CLO (last error),
		 * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors.
		 */
	}

	rq_prod_last = s->si[0].state;
	rq_cons_last = s->si[1].state;
	rp_cons_last = s->si[0].state;
	rp_prod_last = s->si[1].state;

 resync_stream_interface:
	/* Check for connection closure */

	DPRINTF(stderr,
		"[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n",
		now_ms, __FUNCTION__, __LINE__,
		t,
		s, s->flags,
		s->req, s->rep,
		s->req->rex, s->rep->wex,
		s->req->flags, s->rep->flags,
		s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state,
		s->rep->cons->err_type, s->req->cons->err_type,
		s->req->cons->conn_retries);

	/* nothing special to be done on client side */
	if (unlikely(s->req->prod->state == SI_ST_DIS))
		s->req->prod->state = SI_ST_CLO;

	/* When a server-side connection is released, we have to count it and
	 * check for pending connections on this server.
	 */
	if (unlikely(s->req->cons->state == SI_ST_DIS)) {
		s->req->cons->state = SI_ST_CLO;
		srv = objt_server(s->target);
		if (srv) {
			if (s->flags & SN_CURR_SESS) {
				s->flags &= ~SN_CURR_SESS;
				srv->cur_sess--;
			}
			sess_change_server(s, NULL);
			if (may_dequeue_tasks(srv, s->be))
				process_srv_queue(srv);
		}
	}

	/*
	 * Note: of the transient states (REQ, CER, DIS), only REQ may remain
	 * at this point.
	 */

 resync_request:
	/* Analyse request */
	if (((s->req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
	    ((s->req->flags ^ rqf_last) & CF_MASK_STATIC) ||
	    s->si[0].state != rq_prod_last ||
	    s->si[1].state != rq_cons_last) {
		unsigned int flags = s->req->flags;

		if (s->req->prod->state >= SI_ST_EST) {
			int max_loops = global.tune.maxpollevents;
			unsigned int ana_list;
			unsigned int ana_back;

			/* it's up to the analysers to stop new connections,
			 * disable reading or closing. Note: if an analyser
			 * disables any of these bits, it is responsible for
			 * enabling them again when it disables itself, so
			 * that other analysers are called in similar conditions.
			 */
			channel_auto_read(s->req);
			channel_auto_connect(s->req);
			channel_auto_close(s->req);

			/* We will call all analysers for which a bit is set in
			 * s->req->analysers, following the bit order from LSB
			 * to MSB. The analysers must remove themselves from
			 * the list when not needed. Any analyser may return 0
			 * to break out of the loop, either because of missing
			 * data to take a decision, or because it decides to
			 * kill the session. We loop at least once through each
			 * analyser, and we may loop again if other analysers
			 * are added in the middle.
			 *
			 * We build a list of analysers to run. We evaluate all
			 * of these analysers in the order of the lower bit to
			 * the higher bit. This ordering is very important.
			 * An analyser will often add/remove other analysers,
			 * including itself. Any changes to itself have no effect
			 * on the loop. If it removes any other analysers, we
			 * want those analysers not to be called anymore during
			 * this loop. If it adds an analyser that is located
			 * after itself, we want it to be scheduled for being
			 * processed during the loop. If it adds an analyser
			 * which is located before it, we want it to switch to
			 * it immediately, even if it has already been called
			 * once but removed since.
			 *
			 * In order to achieve this, we compare the analyser
			 * list after the call with a copy of it before the
			 * call. The work list is fed with analyser bits that
			 * appeared during the call. Then we compare previous
			 * work list with the new one, and check the bits that
			 * appeared. If the lowest of these bits is lower than
			 * the current bit, it means we have enabled a previous
			 * analyser and must immediately loop again.
			 */

			ana_list = ana_back = s->req->analysers;
			while (ana_list && max_loops--) {
				/* Warning! ensure that analysers are always placed in ascending order! */

				if (ana_list & AN_REQ_INSPECT_FE) {
					if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT_FE))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT_FE);
				}

				if (ana_list & AN_REQ_WAIT_HTTP) {
					if (!http_wait_for_request(s, s->req, AN_REQ_WAIT_HTTP))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP);
				}

				if (ana_list & AN_REQ_HTTP_PROCESS_FE) {
					if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_FE, s->fe))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE);
				}

				if (ana_list & AN_REQ_SWITCHING_RULES) {
					if (!process_switching_rules(s, s->req, AN_REQ_SWITCHING_RULES))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
				}

				if (ana_list & AN_REQ_INSPECT_BE) {
					if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT_BE))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT_BE);
				}

				if (ana_list & AN_REQ_HTTP_PROCESS_BE) {
					if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_BE, s->be))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE);
				}

				if (ana_list & AN_REQ_HTTP_TARPIT) {
					if (!http_process_tarpit(s, s->req, AN_REQ_HTTP_TARPIT))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
				}

				if (ana_list & AN_REQ_SRV_RULES) {
					if (!process_server_rules(s, s->req, AN_REQ_SRV_RULES))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SRV_RULES);
				}

				if (ana_list & AN_REQ_HTTP_INNER) {
					if (!http_process_request(s, s->req, AN_REQ_HTTP_INNER))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER);
				}

				if (ana_list & AN_REQ_HTTP_BODY) {
					if (!http_wait_for_request_body(s, s->req, AN_REQ_HTTP_BODY))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY);
				}

				if (ana_list & AN_REQ_PRST_RDP_COOKIE) {
					if (!tcp_persist_rdp_cookie(s, s->req, AN_REQ_PRST_RDP_COOKIE))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
				}

				if (ana_list & AN_REQ_STICKING_RULES) {
					if (!process_sticking_rules(s, s->req, AN_REQ_STICKING_RULES))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES);
				}

				if (ana_list & AN_REQ_HTTP_XFER_BODY) {
					if (!http_request_forward_body(s, s->req, AN_REQ_HTTP_XFER_BODY))
						break;
					UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
				}
				break;
			}
		}

		rq_prod_last = s->si[0].state;
		rq_cons_last = s->si[1].state;
		s->req->flags &= ~CF_WAKE_ONCE;
		rqf_last = s->req->flags;

		if ((s->req->flags ^ flags) & CF_MASK_STATIC)
			goto resync_request;
	}

	/* we'll monitor the request analysers while parsing the response,
	 * because some response analysers may indirectly enable new request
	 * analysers (eg: HTTP keep-alive).
	 */
	req_ana_back = s->req->analysers;

 resync_response:
	/* Analyse response */

	if (((s->rep->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
		 (s->rep->flags ^ rpf_last) & CF_MASK_STATIC ||
		 s->si[0].state != rp_cons_last ||
		 s->si[1].state != rp_prod_last) {
		unsigned int flags = s->rep->flags;

		if ((s->rep->flags & CF_MASK_ANALYSER) &&
		    (s->rep->analysers & AN_REQ_WAIT_HTTP)) {
			/* Due to HTTP pipelining, the HTTP request analyser might be waiting
			 * for some free space in the response buffer, so we might need to call
			 * it when something changes in the response buffer, but still we pass
			 * it the request buffer. Note that the SI state might very well still
			 * be zero due to us returning a flow of redirects!
			 */
			s->rep->analysers &= ~AN_REQ_WAIT_HTTP;
			s->req->flags |= CF_WAKE_ONCE;
		}

		if (s->rep->prod->state >= SI_ST_EST) {
			int max_loops = global.tune.maxpollevents;
			unsigned int ana_list;
			unsigned int ana_back;

			/* it's up to the analysers to stop disable reading or
			 * closing. Note: if an analyser disables any of these
			 * bits, it is responsible for enabling them again when
			 * it disables itself, so that other analysers are called
			 * in similar conditions.
			 */
			channel_auto_read(s->rep);
			channel_auto_close(s->rep);

			/* We will call all analysers for which a bit is set in
			 * s->rep->analysers, following the bit order from LSB
			 * to MSB. The analysers must remove themselves from
			 * the list when not needed. Any analyser may return 0
			 * to break out of the loop, either because of missing
			 * data to take a decision, or because it decides to
			 * kill the session. We loop at least once through each
			 * analyser, and we may loop again if other analysers
			 * are added in the middle.
			 */

			ana_list = ana_back = s->rep->analysers;
			while (ana_list && max_loops--) {
				/* Warning! ensure that analysers are always placed in ascending order! */

				if (ana_list & AN_RES_INSPECT) {
					if (!tcp_inspect_response(s, s->rep, AN_RES_INSPECT))
						break;
					UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_INSPECT);
				}

				if (ana_list & AN_RES_WAIT_HTTP) {
					if (!http_wait_for_response(s, s->rep, AN_RES_WAIT_HTTP))
						break;
					UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP);
				}

				if (ana_list & AN_RES_STORE_RULES) {
					if (!process_store_rules(s, s->rep, AN_RES_STORE_RULES))
						break;
					UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_STORE_RULES);
				}

				if (ana_list & AN_RES_HTTP_PROCESS_BE) {
					if (!http_process_res_common(s, s->rep, AN_RES_HTTP_PROCESS_BE, s->be))
						break;
					UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE);
				}

				if (ana_list & AN_RES_HTTP_XFER_BODY) {
					if (!http_response_forward_body(s, s->rep, AN_RES_HTTP_XFER_BODY))
						break;
					UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
				}
				break;
			}
		}

		rp_cons_last = s->si[0].state;
		rp_prod_last = s->si[1].state;
		rpf_last = s->rep->flags;

		if ((s->rep->flags ^ flags) & CF_MASK_STATIC)
			goto resync_response;
	}

	/* maybe someone has added some request analysers, so we must check and loop */
	if (s->req->analysers & ~req_ana_back)
		goto resync_request;

	if ((s->req->flags & ~rqf_last) & CF_MASK_ANALYSER)
		goto resync_request;

	/* FIXME: here we should call protocol handlers which rely on
	 * both buffers.
	 */


	/*
	 * Now we propagate unhandled errors to the session. Normally
	 * we're just in a data phase here since it means we have not
	 * seen any analyser who could set an error status.
	 */
	srv = objt_server(s->target);
	if (unlikely(!(s->flags & SN_ERR_MASK))) {
		if (s->req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
			/* Report it if the client got an error or a read timeout expired */
			s->req->analysers = 0;
			if (s->req->flags & CF_READ_ERROR) {
				s->be->be_counters.cli_aborts++;
				s->fe->fe_counters.cli_aborts++;
				if (srv)
					srv->counters.cli_aborts++;
				s->flags |= SN_ERR_CLICL;
			}
			else if (s->req->flags & CF_READ_TIMEOUT) {
				s->be->be_counters.cli_aborts++;
				s->fe->fe_counters.cli_aborts++;
				if (srv)
					srv->counters.cli_aborts++;
				s->flags |= SN_ERR_CLITO;
			}
			else if (s->req->flags & CF_WRITE_ERROR) {
				s->be->be_counters.srv_aborts++;
				s->fe->fe_counters.srv_aborts++;
				if (srv)
					srv->counters.srv_aborts++;
				s->flags |= SN_ERR_SRVCL;
			}
			else {
				s->be->be_counters.srv_aborts++;
				s->fe->fe_counters.srv_aborts++;
				if (srv)
					srv->counters.srv_aborts++;
				s->flags |= SN_ERR_SRVTO;
			}
			sess_set_term_flags(s);
		}
		else if (s->rep->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
			/* Report it if the server got an error or a read timeout expired */
			s->rep->analysers = 0;
			if (s->rep->flags & CF_READ_ERROR) {
				s->be->be_counters.srv_aborts++;
				s->fe->fe_counters.srv_aborts++;
				if (srv)
					srv->counters.srv_aborts++;
				s->flags |= SN_ERR_SRVCL;
			}
			else if (s->rep->flags & CF_READ_TIMEOUT) {
				s->be->be_counters.srv_aborts++;
				s->fe->fe_counters.srv_aborts++;
				if (srv)
					srv->counters.srv_aborts++;
				s->flags |= SN_ERR_SRVTO;
			}
			else if (s->rep->flags & CF_WRITE_ERROR) {
				s->be->be_counters.cli_aborts++;
				s->fe->fe_counters.cli_aborts++;
				if (srv)
					srv->counters.cli_aborts++;
				s->flags |= SN_ERR_CLICL;
			}
			else {
				s->be->be_counters.cli_aborts++;
				s->fe->fe_counters.cli_aborts++;
				if (srv)
					srv->counters.cli_aborts++;
				s->flags |= SN_ERR_CLITO;
			}
			sess_set_term_flags(s);
		}
	}

	/*
	 * Here we take care of forwarding unhandled data. This also includes
	 * connection establishments and shutdown requests.
	 */


	/* If noone is interested in analysing data, it's time to forward
	 * everything. We configure the buffer to forward indefinitely.
	 * Note that we're checking CF_SHUTR_NOW as an indication of a possible
	 * recent call to channel_abort().
	 */
	if (unlikely(!s->req->analysers &&
	    !(s->req->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
	    (s->req->prod->state >= SI_ST_EST) &&
	    (s->req->to_forward != CHN_INFINITE_FORWARD))) {
		/* This buffer is freewheeling, there's no analyser
		 * attached to it. If any data are left in, we'll permit them to
		 * move.
		 */
		channel_auto_read(s->req);
		channel_auto_connect(s->req);
		channel_auto_close(s->req);
		buffer_flush(s->req->buf);

		/* We'll let data flow between the producer (if still connected)
		 * to the consumer (which might possibly not be connected yet).
		 */
		if (!(s->req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
			channel_forward(s->req, CHN_INFINITE_FORWARD);
	}

	/* check if it is wise to enable kernel splicing to forward request data */
	if (!(s->req->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
	    s->req->to_forward &&
	    (global.tune.options & GTUNE_USE_SPLICE) &&
	    (objt_conn(s->si[0].end) && __objt_conn(s->si[0].end)->xprt && __objt_conn(s->si[0].end)->xprt->rcv_pipe) &&
	    (objt_conn(s->si[1].end) && __objt_conn(s->si[1].end)->xprt && __objt_conn(s->si[1].end)->xprt->snd_pipe) &&
	    (pipes_used < global.maxpipes) &&
	    (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
	     (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
	      (s->req->flags & CF_STREAMER_FAST)))) {
		s->req->flags |= CF_KERN_SPLICING;
	}

	/* reflect what the L7 analysers have seen last */
	rqf_last = s->req->flags;

	/*
	 * Now forward all shutdown requests between both sides of the buffer
	 */

	/* first, let's check if the request buffer needs to shutdown(write), which may
	 * happen either because the input is closed or because we want to force a close
	 * once the server has begun to respond. If a half-closed timeout is set, we adjust
	 * the other side's timeout as well.
	 */
	if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
		     (CF_AUTO_CLOSE|CF_SHUTR))) {
		channel_shutw_now(s->req);
		if (tick_isset(s->fe->timeout.clientfin)) {
			s->rep->wto = s->fe->timeout.clientfin;
			s->rep->wex = tick_add(now_ms, s->rep->wto);
		}
	}

	/* shutdown(write) pending */
	if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
		     channel_is_empty(s->req))) {
		if (s->req->flags & CF_READ_ERROR)
			s->req->cons->flags |= SI_FL_NOLINGER;
		si_shutw(s->req->cons);
		if (tick_isset(s->be->timeout.serverfin)) {
			s->rep->rto = s->be->timeout.serverfin;
			s->rep->rex = tick_add(now_ms, s->rep->rto);
		}
	}

	/* shutdown(write) done on server side, we must stop the client too */
	if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW &&
		     !s->req->analysers))
		channel_shutr_now(s->req);

	/* shutdown(read) pending */
	if (unlikely((s->req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
		if (s->req->prod->flags & SI_FL_NOHALF)
			s->req->prod->flags |= SI_FL_NOLINGER;
		si_shutr(s->req->prod);
		if (tick_isset(s->fe->timeout.clientfin)) {
			s->rep->wto = s->fe->timeout.clientfin;
			s->rep->wex = tick_add(now_ms, s->rep->wto);
		}
	}

	/* it's possible that an upper layer has requested a connection setup or abort.
	 * There are 2 situations where we decide to establish a new connection :
	 *  - there are data scheduled for emission in the buffer
	 *  - the CF_AUTO_CONNECT flag is set (active connection)
	 */
	if (s->req->cons->state == SI_ST_INI) {
		if (!(s->req->flags & CF_SHUTW)) {
			if ((s->req->flags & CF_AUTO_CONNECT) || !channel_is_empty(s->req)) {
				/* If we have an appctx, there is no connect method, so we
				 * immediately switch to the connected state, otherwise we
				 * perform a connection request.
				 */
				s->req->cons->state = SI_ST_REQ; /* new connection requested */
				s->req->cons->conn_retries = s->be->conn_retries;
			}
		}
		else {
			s->req->cons->state = SI_ST_CLO; /* shutw+ini = abort */
			channel_shutw_now(s->req);        /* fix buffer flags upon abort */
			channel_shutr_now(s->rep);
		}
	}


	/* we may have a pending connection request, or a connection waiting
	 * for completion.
	 */
	if (s->si[1].state >= SI_ST_REQ && s->si[1].state < SI_ST_CON) {
		do {
			/* nb: step 1 might switch from QUE to ASS, but we first want
			 * to give a chance to step 2 to perform a redirect if needed.
			 */
			if (s->si[1].state != SI_ST_REQ)
				sess_update_stream_int(s, &s->si[1]);
			if (s->si[1].state == SI_ST_REQ)
				sess_prepare_conn_req(s, &s->si[1]);

			/* applets directly go to the ESTABLISHED state. Similarly,
			 * servers experience the same fate when their connection
			 * is reused.
			 */
			if (unlikely(s->si[1].state == SI_ST_EST))
				sess_establish(s, &s->si[1]);

			/* Now we can add the server name to a header (if requested) */
			/* check for HTTP mode and proxy server_name_hdr_name != NULL */
			if ((s->si[1].state >= SI_ST_CON) &&
			    (s->be->server_id_hdr_name != NULL) &&
			    (s->be->mode == PR_MODE_HTTP) &&
			    objt_server(s->target)) {
				http_send_name_header(&s->txn, s->be, objt_server(s->target)->id);
			}

			srv = objt_server(s->target);
			if (s->si[1].state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SN_REDIRECTABLE))
				http_perform_server_redirect(s, &s->si[1]);
		} while (s->si[1].state == SI_ST_ASS);
	}

	/* Benchmarks have shown that it's optimal to do a full resync now */
	if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS)
		goto resync_stream_interface;

	/* otherwise we want to check if we need to resync the req buffer or not */
	if ((s->req->flags ^ rqf_last) & CF_MASK_STATIC)
		goto resync_request;

	/* perform output updates to the response buffer */

	/* If noone is interested in analysing data, it's time to forward
	 * everything. We configure the buffer to forward indefinitely.
	 * Note that we're checking CF_SHUTR_NOW as an indication of a possible
	 * recent call to channel_abort().
	 */
	if (unlikely(!s->rep->analysers &&
	    !(s->rep->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
	    (s->rep->prod->state >= SI_ST_EST) &&
	    (s->rep->to_forward != CHN_INFINITE_FORWARD))) {
		/* This buffer is freewheeling, there's no analyser
		 * attached to it. If any data are left in, we'll permit them to
		 * move.
		 */
		channel_auto_read(s->rep);
		channel_auto_close(s->rep);
		buffer_flush(s->rep->buf);

		/* We'll let data flow between the producer (if still connected)
		 * to the consumer.
		 */
		if (!(s->rep->flags & (CF_SHUTR|CF_SHUTW_NOW)))
			channel_forward(s->rep, CHN_INFINITE_FORWARD);

		/* if we have no analyser anymore in any direction and have a
		 * tunnel timeout set, use it now. Note that we must respect
		 * the half-closed timeouts as well.
		 */
		if (!s->req->analysers && s->be->timeout.tunnel) {
			s->req->rto = s->req->wto = s->rep->rto = s->rep->wto =
				s->be->timeout.tunnel;

			if ((s->req->flags & CF_SHUTR) && tick_isset(s->fe->timeout.clientfin))
				s->rep->wto = s->fe->timeout.clientfin;
			if ((s->req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin))
				s->rep->rto = s->be->timeout.serverfin;
			if ((s->rep->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin))
				s->req->wto = s->be->timeout.serverfin;
			if ((s->rep->flags & CF_SHUTW) && tick_isset(s->fe->timeout.clientfin))
				s->req->rto = s->fe->timeout.clientfin;

			s->req->rex = tick_add(now_ms, s->req->rto);
			s->req->wex = tick_add(now_ms, s->req->wto);
			s->rep->rex = tick_add(now_ms, s->rep->rto);
			s->rep->wex = tick_add(now_ms, s->rep->wto);
		}
	}

	/* check if it is wise to enable kernel splicing to forward response data */
	if (!(s->rep->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
	    s->rep->to_forward &&
	    (global.tune.options & GTUNE_USE_SPLICE) &&
	    (objt_conn(s->si[0].end) && __objt_conn(s->si[0].end)->xprt && __objt_conn(s->si[0].end)->xprt->snd_pipe) &&
	    (objt_conn(s->si[1].end) && __objt_conn(s->si[1].end)->xprt && __objt_conn(s->si[1].end)->xprt->rcv_pipe) &&
	    (pipes_used < global.maxpipes) &&
	    (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
	     (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
	      (s->rep->flags & CF_STREAMER_FAST)))) {
		s->rep->flags |= CF_KERN_SPLICING;
	}

	/* reflect what the L7 analysers have seen last */
	rpf_last = s->rep->flags;

	/*
	 * Now forward all shutdown requests between both sides of the buffer
	 */

	/*
	 * FIXME: this is probably where we should produce error responses.
	 */

	/* first, let's check if the response buffer needs to shutdown(write) */
	if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
		     (CF_AUTO_CLOSE|CF_SHUTR))) {
		channel_shutw_now(s->rep);
		if (tick_isset(s->be->timeout.serverfin)) {
			s->req->wto = s->be->timeout.serverfin;
			s->req->wex = tick_add(now_ms, s->req->wto);
		}
	}

	/* shutdown(write) pending */
	if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
		     channel_is_empty(s->rep))) {
		si_shutw(s->rep->cons);
		if (tick_isset(s->fe->timeout.clientfin)) {
			s->req->rto = s->fe->timeout.clientfin;
			s->req->rex = tick_add(now_ms, s->req->rto);
		}
	}

	/* shutdown(write) done on the client side, we must stop the server too */
	if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) &&
	    !s->rep->analysers)
		channel_shutr_now(s->rep);

	/* shutdown(read) pending */
	if (unlikely((s->rep->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
		if (s->rep->prod->flags & SI_FL_NOHALF)
			s->rep->prod->flags |= SI_FL_NOLINGER;
		si_shutr(s->rep->prod);
		if (tick_isset(s->be->timeout.serverfin)) {
			s->req->wto = s->be->timeout.serverfin;
			s->req->wex = tick_add(now_ms, s->req->wto);
		}
	}

	if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS)
		goto resync_stream_interface;

	if (s->req->flags != rqf_last)
		goto resync_request;

	if ((s->rep->flags ^ rpf_last) & CF_MASK_STATIC)
		goto resync_response;

	/* we're interested in getting wakeups again */
	s->req->prod->flags &= ~SI_FL_DONT_WAKE;
	s->req->cons->flags &= ~SI_FL_DONT_WAKE;

	/* This is needed only when debugging is enabled, to indicate
	 * client-side or server-side close. Please note that in the unlikely
	 * event where both sides would close at once, the sequence is reported
	 * on the server side first.
	 */
	if (unlikely((global.mode & MODE_DEBUG) &&
		     (!(global.mode & MODE_QUIET) ||
		      (global.mode & MODE_VERBOSE)))) {
		if (s->si[1].state == SI_ST_CLO &&
		    s->si[1].prev_state == SI_ST_EST) {
			chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
				      s->uniq_id, s->be->id,
			              objt_conn(s->si[0].end) ? (unsigned short)objt_conn(s->si[0].end)->t.sock.fd : -1,
			              objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1);
			shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
		}

		if (s->si[0].state == SI_ST_CLO &&
		    s->si[0].prev_state == SI_ST_EST) {
			chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
				      s->uniq_id, s->be->id,
			              objt_conn(s->si[0].end) ? (unsigned short)objt_conn(s->si[0].end)->t.sock.fd : -1,
			              objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1);
			shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
		}
	}

	if (likely((s->rep->cons->state != SI_ST_CLO) ||
		   (s->req->cons->state > SI_ST_INI && s->req->cons->state < SI_ST_CLO))) {

		if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED))
			session_process_counters(s);

		if (s->rep->cons->state == SI_ST_EST && obj_type(s->rep->cons->end) != OBJ_TYPE_APPCTX)
			si_update(s->rep->cons);

		if (s->req->cons->state == SI_ST_EST && obj_type(s->req->cons->end) != OBJ_TYPE_APPCTX)
			si_update(s->req->cons);

		s->req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED);
		s->rep->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED);
		s->si[0].prev_state = s->si[0].state;
		s->si[1].prev_state = s->si[1].state;
		s->si[0].flags &= ~(SI_FL_ERR|SI_FL_EXP);
		s->si[1].flags &= ~(SI_FL_ERR|SI_FL_EXP);

		/* Trick: if a request is being waiting for the server to respond,
		 * and if we know the server can timeout, we don't want the timeout
		 * to expire on the client side first, but we're still interested
		 * in passing data from the client to the server (eg: POST). Thus,
		 * we can cancel the client's request timeout if the server's
		 * request timeout is set and the server has not yet sent a response.
		 */

		if ((s->rep->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 &&
		    (tick_isset(s->req->wex) || tick_isset(s->rep->rex))) {
			s->req->flags |= CF_READ_NOEXP;
			s->req->rex = TICK_ETERNITY;
		}

		/* When any of the stream interfaces is attached to an applet,
		 * we have to call it here. Note that this one may wake the
		 * task up again. If at least one applet was called, the current
		 * task might have been woken up, in which case we don't want it
		 * to be requeued to the wait queue but rather to the run queue
		 * to run ASAP. The bitwise "or" in the condition ensures that
		 * both functions are always called and that we wake up if at
		 * least one did something.
		 */
		if ((si_applet_call(s->req->cons) | si_applet_call(s->rep->cons)) != 0) {
			if (task_in_rq(t)) {
				t->expire = TICK_ETERNITY;
				return t;
			}
		}

	update_exp_and_leave:
		t->expire = tick_first(tick_first(s->req->rex, s->req->wex),
				       tick_first(s->rep->rex, s->rep->wex));
		if (s->req->analysers)
			t->expire = tick_first(t->expire, s->req->analyse_exp);

		if (s->si[0].exp)
			t->expire = tick_first(t->expire, s->si[0].exp);

		if (s->si[1].exp)
			t->expire = tick_first(t->expire, s->si[1].exp);

#ifdef DEBUG_FULL
		fprintf(stderr,
			"[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u"
			" rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n",
			now_ms, t->expire, s->req->rex, s->req->wex, s->req->analyse_exp,
			s->rep->rex, s->rep->wex, s->si[0].exp, s->si[1].exp, s->si[0].state, s->si[1].state);
#endif

#ifdef DEBUG_DEV
		/* this may only happen when no timeout is set or in case of an FSM bug */
		if (!tick_isset(t->expire))
			ABORT_NOW();
#endif
		return t; /* nothing more to do */
	}

	s->fe->feconn--;
	if (s->flags & SN_BE_ASSIGNED)
		s->be->beconn--;
	jobs--;
	if (s->listener) {
		if (!(s->listener->options & LI_O_UNLIMITED))
			actconn--;
		s->listener->nbconn--;
		if (s->listener->state == LI_FULL)
			resume_listener(s->listener);

		/* Dequeues all of the listeners waiting for a resource */
		if (!LIST_ISEMPTY(&global_listener_queue))
			dequeue_all_listeners(&global_listener_queue);

		if (!LIST_ISEMPTY(&s->fe->listener_queue) &&
		    (!s->fe->fe_sps_lim || freq_ctr_remain(&s->fe->fe_sess_per_sec, s->fe->fe_sps_lim, 0) > 0))
			dequeue_all_listeners(&s->fe->listener_queue);
	}

	if (unlikely((global.mode & MODE_DEBUG) &&
		     (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
		chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
			      s->uniq_id, s->be->id,
		              objt_conn(s->si[0].end) ? (unsigned short)objt_conn(s->si[0].end)->t.sock.fd : -1,
		              objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1);
		shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
	}

	s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
	session_process_counters(s);

	if (s->txn.status) {
		int n;

		n = s->txn.status / 100;
		if (n < 1 || n > 5)
			n = 0;

		if (s->fe->mode == PR_MODE_HTTP) {
			s->fe->fe_counters.p.http.rsp[n]++;
			if (s->comp_algo && (s->flags & SN_COMP_READY))
				s->fe->fe_counters.p.http.comp_rsp++;
		}
		if ((s->flags & SN_BE_ASSIGNED) &&
		    (s->be->mode == PR_MODE_HTTP)) {
			s->be->be_counters.p.http.rsp[n]++;
			s->be->be_counters.p.http.cum_req++;
			if (s->comp_algo && (s->flags & SN_COMP_READY))
				s->be->be_counters.p.http.comp_rsp++;
		}
	}

	/* let's do a final log if we need it */
	if (!LIST_ISEMPTY(&s->fe->logformat) && s->logs.logwait &&
	    !(s->flags & SN_MONITOR) &&
	    (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) {
		s->do_log(s);
	}

	/* update time stats for this session */
	session_update_time_stats(s);

	/* the task MUST not be in the run queue anymore */
	session_free(s);
	task_delete(t);
	task_free(t);
	return NULL;
}

/* Update the session's backend and server time stats */
void session_update_time_stats(struct session *s)
{
	int t_request;
	int t_queue;
	int t_connect;
	int t_data;
	int t_close;
	struct server *srv;

	t_request = 0;
	t_queue   = s->logs.t_queue;
	t_connect = s->logs.t_connect;
	t_close   = s->logs.t_close;
	t_data    = s->logs.t_data;

	if (s->be->mode != PR_MODE_HTTP)
		t_data = t_connect;

	if (t_connect < 0 || t_data < 0)
		return;

	if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
		t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);

	t_data    -= t_connect;
	t_connect -= t_queue;
	t_queue   -= t_request;

	srv = objt_server(s->target);
	if (srv) {
		swrate_add(&srv->counters.q_time, TIME_STATS_SAMPLES, t_queue);
		swrate_add(&srv->counters.c_time, TIME_STATS_SAMPLES, t_connect);
		swrate_add(&srv->counters.d_time, TIME_STATS_SAMPLES, t_data);
		swrate_add(&srv->counters.t_time, TIME_STATS_SAMPLES, t_close);
	}
	swrate_add(&s->be->be_counters.q_time, TIME_STATS_SAMPLES, t_queue);
	swrate_add(&s->be->be_counters.c_time, TIME_STATS_SAMPLES, t_connect);
	swrate_add(&s->be->be_counters.d_time, TIME_STATS_SAMPLES, t_data);
	swrate_add(&s->be->be_counters.t_time, TIME_STATS_SAMPLES, t_close);
}

/*
 * This function adjusts sess->srv_conn and maintains the previous and new
 * server's served session counts. Setting newsrv to NULL is enough to release
 * current connection slot. This function also notifies any LB algo which might
 * expect to be informed about any change in the number of active sessions on a
 * server.
 */
void sess_change_server(struct session *sess, struct server *newsrv)
{
	if (sess->srv_conn == newsrv)
		return;

	if (sess->srv_conn) {
		sess->srv_conn->served--;
		if (sess->srv_conn->proxy->lbprm.server_drop_conn)
			sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn);
		session_del_srv_conn(sess);
	}

	if (newsrv) {
		newsrv->served++;
		if (newsrv->proxy->lbprm.server_take_conn)
			newsrv->proxy->lbprm.server_take_conn(newsrv);
		session_add_srv_conn(sess, newsrv);
	}
}

/* Handle server-side errors for default protocols. It is called whenever a a
 * connection setup is aborted or a request is aborted in queue. It sets the
 * session termination flags so that the caller does not have to worry about
 * them. It's installed as ->srv_error for the server-side stream_interface.
 */
void default_srv_error(struct session *s, struct stream_interface *si)
{
	int err_type = si->err_type;
	int err = 0, fin = 0;

	if (err_type & SI_ET_QUEUE_ABRT) {
		err = SN_ERR_CLICL;
		fin = SN_FINST_Q;
	}
	else if (err_type & SI_ET_CONN_ABRT) {
		err = SN_ERR_CLICL;
		fin = SN_FINST_C;
	}
	else if (err_type & SI_ET_QUEUE_TO) {
		err = SN_ERR_SRVTO;
		fin = SN_FINST_Q;
	}
	else if (err_type & SI_ET_QUEUE_ERR) {
		err = SN_ERR_SRVCL;
		fin = SN_FINST_Q;
	}
	else if (err_type & SI_ET_CONN_TO) {
		err = SN_ERR_SRVTO;
		fin = SN_FINST_C;
	}
	else if (err_type & SI_ET_CONN_ERR) {
		err = SN_ERR_SRVCL;
		fin = SN_FINST_C;
	}
	else if (err_type & SI_ET_CONN_RES) {
		err = SN_ERR_RESOURCE;
		fin = SN_FINST_C;
	}
	else /* SI_ET_CONN_OTHER and others */ {
		err = SN_ERR_INTERNAL;
		fin = SN_FINST_C;
	}

	if (!(s->flags & SN_ERR_MASK))
		s->flags |= err;
	if (!(s->flags & SN_FINST_MASK))
		s->flags |= fin;
}

/* kill a session and set the termination flags to <why> (one of SN_ERR_*) */
void session_shutdown(struct session *session, int why)
{
	if (session->req->flags & (CF_SHUTW|CF_SHUTW_NOW))
		return;

	channel_shutw_now(session->req);
	channel_shutr_now(session->rep);
	session->task->nice = 1024;
	if (!(session->flags & SN_ERR_MASK))
		session->flags |= why;
	task_wakeup(session->task, TASK_WOKEN_OTHER);
}

/************************************************************************/
/*           All supported ACL keywords must be declared here.          */
/************************************************************************/

/* Returns a pointer to a stkctr depending on the fetch keyword name.
 * It is designed to be called as sc[0-9]_* sc_* or src_* exclusively.
 * sc[0-9]_* will return a pointer to the respective field in the
 * session <l4>. sc_* requires an UINT argument specifying the stick
 * counter number. src_* will fill a locally allocated structure with
 * the table and entry corresponding to what is specified with src_*.
 * NULL may be returned if the designated stkctr is not tracked. For
 * the sc_* and sc[0-9]_* forms, an optional table argument may be
 * passed. When present, the currently tracked key is then looked up
 * in the specified table instead of the current table. The purpose is
 * to be able to convery multiple values per key (eg: have gpc0 from
 * multiple tables).
 */
static struct stkctr *
smp_fetch_sc_stkctr(struct session *l4, const struct arg *args, const char *kw)
{
	static struct stkctr stkctr;
	struct stksess *stksess;
	unsigned int num = kw[2] - '0';
	int arg = 0;

	if (num == '_' - '0') {
		/* sc_* variant, args[0] = ctr# (mandatory) */
		num = args[arg++].data.uint;
		if (num >= MAX_SESS_STKCTR)
			return NULL;
	}
	else if (num > 9) { /* src_* variant, args[0] = table */
		struct stktable_key *key;
		struct connection *conn = objt_conn(l4->si[0].end);

		if (!conn)
			return NULL;

		key = addr_to_stktable_key(&conn->addr.from, args->data.prx->table.type);
		if (!key)
			return NULL;

		stkctr.table = &args->data.prx->table;
		stkctr_set_entry(&stkctr, stktable_lookup_key(stkctr.table, key));
		return &stkctr;
	}

	/* Here, <num> contains the counter number from 0 to 9 for
	 * the sc[0-9]_ form, or even higher using sc_(num) if needed.
	 * args[arg] is the first optional argument.
	 */
	stksess = stkctr_entry(&l4->stkctr[num]);
	if (!stksess)
		return NULL;

	if (unlikely(args[arg].type == ARGT_TAB)) {
		/* an alternate table was specified, let's look up the same key there */
		stkctr.table = &args[arg].data.prx->table;
		stkctr_set_entry(&stkctr, stktable_lookup(stkctr.table, stksess));
		return &stkctr;
	}
	return &l4->stkctr[num];
}

/* set return a boolean indicating if the requested session counter is
 * currently being tracked or not.
 * Supports being called as "sc[0-9]_tracked" only.
 */
static int
smp_fetch_sc_tracked(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                      const struct arg *args, struct sample *smp, const char *kw)
{
	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_BOOL;
	smp->data.uint = !!smp_fetch_sc_stkctr(l4, args, kw);
	return 1;
}

/* set <smp> to the General Purpose Counter 0 value from the session's tracked
 * frontend counters or from the src.
 * Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpc0" only. Value
 * zero is returned if the key is new.
 */
static int
smp_fetch_sc_get_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                      const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;

	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, gpc0);
	}
	return 1;
}

/* set <smp> to the General Purpose Counter 0's event rate from the session's
 * tracked frontend counters or from the src.
 * Supports being called as "sc[0-9]_gpc0_rate" or "src_gpc0_rate" only.
 * Value zero is returned if the key is new.
 */
static int
smp_fetch_sc_gpc0_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                       const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, gpc0_rate),
		                                      stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u);
	}
	return 1;
}

/* Increment the General Purpose Counter 0 value from the session's tracked
 * frontend counters and return it into temp integer.
 * Supports being called as "sc[0-9]_inc_gpc0" or "src_inc_gpc0" only.
 */
static int
smp_fetch_sc_inc_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                      const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr;

		/* First, update gpc0_rate if it's tracked. Second, update its
		 * gpc0 if tracked. Returns gpc0's value otherwise the curr_ctr.
		 */
		ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE);
		if (ptr) {
			update_freq_ctr_period(&stktable_data_cast(ptr, gpc0_rate),
					       stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u, 1);
			smp->data.uint = (&stktable_data_cast(ptr, gpc0_rate))->curr_ctr;
		}

		ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
		if (ptr)
			smp->data.uint = ++stktable_data_cast(ptr, gpc0);

	}
	return 1;
}

/* Clear the General Purpose Counter 0 value from the session's tracked
 * frontend counters and return its previous value into temp integer.
 * Supports being called as "sc[0-9]_clr_gpc0" or "src_clr_gpc0" only.
 */
static int
smp_fetch_sc_clr_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                      const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, gpc0);
		stktable_data_cast(ptr, gpc0) = 0;
	}
	return 1;
}

/* set <smp> to the cumulated number of connections from the session's tracked
 * frontend counters. Supports being called as "sc[0-9]_conn_cnt" or
 * "src_conn_cnt" only.
 */
static int
smp_fetch_sc_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                      const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CNT);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, conn_cnt);
	}
	return 1;
}

/* set <smp> to the connection rate from the session's tracked frontend
 * counters. Supports being called as "sc[0-9]_conn_rate" or "src_conn_rate"
 * only.
 */
static int
smp_fetch_sc_conn_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                       const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_RATE);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, conn_rate),
					       stkctr->table->data_arg[STKTABLE_DT_CONN_RATE].u);
	}
	return 1;
}

/* set temp integer to the number of connections from the session's source address
 * in the table pointed to by expr, after updating it.
 * Accepts exactly 1 argument of type table.
 */
static int
smp_fetch_src_updt_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                            const struct arg *args, struct sample *smp, const char *kw)
{
	struct connection *conn = objt_conn(l4->si[0].end);
	struct stksess *ts;
	struct stktable_key *key;
	void *ptr;

	if (!conn)
		return 0;

	key = addr_to_stktable_key(&conn->addr.from, px->table.type);
	if (!key)
		return 0;

	px = args->data.prx;

	if ((ts = stktable_update_key(&px->table, key)) == NULL)
		/* entry does not exist and could not be created */
		return 0;

	ptr = stktable_data_ptr(&px->table, ts, STKTABLE_DT_CONN_CNT);
	if (!ptr)
		return 0; /* parameter not stored in this table */

	smp->type = SMP_T_UINT;
	smp->data.uint = ++stktable_data_cast(ptr, conn_cnt);
	smp->flags = SMP_F_VOL_TEST;
	return 1;
}

/* set <smp> to the number of concurrent connections from the session's tracked
 * frontend counters. Supports being called as "sc[0-9]_conn_cur" or
 * "src_conn_cur" only.
 */
static int
smp_fetch_sc_conn_cur(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                      const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CUR);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, conn_cur);
	}
	return 1;
}

/* set <smp> to the cumulated number of sessions from the session's tracked
 * frontend counters. Supports being called as "sc[0-9]_sess_cnt" or
 * "src_sess_cnt" only.
 */
static int
smp_fetch_sc_sess_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                      const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, sess_cnt);
	}
	return 1;
}

/* set <smp> to the session rate from the session's tracked frontend counters.
 * Supports being called as "sc[0-9]_sess_rate" or "src_sess_rate" only.
 */
static int
smp_fetch_sc_sess_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                       const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, sess_rate),
					       stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u);
	}
	return 1;
}

/* set <smp> to the cumulated number of HTTP requests from the session's tracked
 * frontend counters. Supports being called as "sc[0-9]_http_req_cnt" or
 * "src_http_req_cnt" only.
 */
static int
smp_fetch_sc_http_req_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                          const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_CNT);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, http_req_cnt);
	}
	return 1;
}

/* set <smp> to the HTTP request rate from the session's tracked frontend
 * counters. Supports being called as "sc[0-9]_http_req_rate" or
 * "src_http_req_rate" only.
 */
static int
smp_fetch_sc_http_req_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                           const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_RATE);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
					       stkctr->table->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u);
	}
	return 1;
}

/* set <smp> to the cumulated number of HTTP requests errors from the session's
 * tracked frontend counters. Supports being called as "sc[0-9]_http_err_cnt" or
 * "src_http_err_cnt" only.
 */
static int
smp_fetch_sc_http_err_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                          const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_CNT);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, http_err_cnt);
	}
	return 1;
}

/* set <smp> to the HTTP request error rate from the session's tracked frontend
 * counters. Supports being called as "sc[0-9]_http_err_rate" or
 * "src_http_err_rate" only.
 */
static int
smp_fetch_sc_http_err_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                           const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_RATE);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
					       stkctr->table->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u);
	}
	return 1;
}

/* set <smp> to the number of kbytes received from clients, as found in the
 * session's tracked frontend counters. Supports being called as
 * "sc[0-9]_kbytes_in" or "src_kbytes_in" only.
 */
static int
smp_fetch_sc_kbytes_in(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                       const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, bytes_in_cnt) >> 10;
	}
	return 1;
}

/* set <smp> to the data rate received from clients in bytes/s, as found
 * in the session's tracked frontend counters. Supports being called as
 * "sc[0-9]_bytes_in_rate" or "src_bytes_in_rate" only.
 */
static int
smp_fetch_sc_bytes_in_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                           const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate),
					       stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u);
	}
	return 1;
}

/* set <smp> to the number of kbytes sent to clients, as found in the
 * session's tracked frontend counters. Supports being called as
 * "sc[0-9]_kbytes_out" or "src_kbytes_out" only.
 */
static int
smp_fetch_sc_kbytes_out(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                       const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = stktable_data_cast(ptr, bytes_out_cnt) >> 10;
	}
	return 1;
}

/* set <smp> to the data rate sent to clients in bytes/s, as found in the
 * session's tracked frontend counters. Supports being called as
 * "sc[0-9]_bytes_out_rate" or "src_bytes_out_rate" only.
 */
static int
smp_fetch_sc_bytes_out_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                            const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = 0;
	if (stkctr_entry(stkctr) != NULL) {
		void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE);
		if (!ptr)
			return 0; /* parameter not stored */
		smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate),
					       stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u);
	}
	return 1;
}

/* set <smp> to the number of active trackers on the SC entry in the session's
 * tracked frontend counters. Supports being called as "sc[0-9]_trackers" only.
 */
static int
smp_fetch_sc_trackers(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                       const struct arg *args, struct sample *smp, const char *kw)
{
	struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw);

	if (!stkctr)
		return 0;

	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = stkctr_entry(stkctr)->ref_cnt;
	return 1;
}

/* set temp integer to the number of used entries in the table pointed to by expr.
 * Accepts exactly 1 argument of type table.
 */
static int
smp_fetch_table_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                    const struct arg *args, struct sample *smp, const char *kw)
{
	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = args->data.prx->table.current;
	return 1;
}

/* set temp integer to the number of free entries in the table pointed to by expr.
 * Accepts exactly 1 argument of type table.
 */
static int
smp_fetch_table_avl(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
                    const struct arg *args, struct sample *smp, const char *kw)
{
	px = args->data.prx;
	smp->flags = SMP_F_VOL_TEST;
	smp->type = SMP_T_UINT;
	smp->data.uint = px->table.size - px->table.current;
	return 1;
}

/* Note: must not be declared <const> as its list will be overwritten.
 * Please take care of keeping this list alphabetically sorted.
 */
static struct acl_kw_list acl_kws = {ILH, {
	{ /* END */ },
}};

/* Note: must not be declared <const> as its list will be overwritten.
 * Please take care of keeping this list alphabetically sorted.
 */
static struct sample_fetch_kw_list smp_fetch_keywords = {ILH, {
	{ "sc_bytes_in_rate",   smp_fetch_sc_bytes_in_rate,  ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_bytes_out_rate",  smp_fetch_sc_bytes_out_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_clr_gpc0",        smp_fetch_sc_clr_gpc0,       ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_conn_cnt",        smp_fetch_sc_conn_cnt,       ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_conn_cur",        smp_fetch_sc_conn_cur,       ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_conn_rate",       smp_fetch_sc_conn_rate,      ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_get_gpc0",        smp_fetch_sc_get_gpc0,       ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_gpc0_rate",       smp_fetch_sc_gpc0_rate,      ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_http_err_cnt",    smp_fetch_sc_http_err_cnt,   ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_http_err_rate",   smp_fetch_sc_http_err_rate,  ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_http_req_cnt",    smp_fetch_sc_http_req_cnt,   ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_http_req_rate",   smp_fetch_sc_http_req_rate,  ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_inc_gpc0",        smp_fetch_sc_inc_gpc0,       ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_kbytes_in",       smp_fetch_sc_kbytes_in,      ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc_kbytes_out",      smp_fetch_sc_kbytes_out,     ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc_sess_cnt",        smp_fetch_sc_sess_cnt,       ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_sess_rate",       smp_fetch_sc_sess_rate,      ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc_tracked",         smp_fetch_sc_tracked,        ARG2(1,UINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
	{ "sc_trackers",        smp_fetch_sc_trackers,       ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_bytes_in_rate",  smp_fetch_sc_bytes_in_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_clr_gpc0",       smp_fetch_sc_clr_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_conn_cnt",       smp_fetch_sc_conn_cnt,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_conn_cur",       smp_fetch_sc_conn_cur,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_conn_rate",      smp_fetch_sc_conn_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_get_gpc0",       smp_fetch_sc_get_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_gpc0_rate",      smp_fetch_sc_gpc0_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_http_err_cnt",   smp_fetch_sc_http_err_cnt,   ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_http_err_rate",  smp_fetch_sc_http_err_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_http_req_cnt",   smp_fetch_sc_http_req_cnt,   ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_http_req_rate",  smp_fetch_sc_http_req_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_inc_gpc0",       smp_fetch_sc_inc_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_kbytes_in",      smp_fetch_sc_kbytes_in,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc0_kbytes_out",     smp_fetch_sc_kbytes_out,     ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc0_sess_cnt",       smp_fetch_sc_sess_cnt,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_sess_rate",      smp_fetch_sc_sess_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc0_tracked",        smp_fetch_sc_tracked,        ARG1(0,TAB),      NULL, SMP_T_BOOL, SMP_USE_INTRN, },
	{ "sc0_trackers",       smp_fetch_sc_trackers,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_bytes_in_rate",  smp_fetch_sc_bytes_in_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_clr_gpc0",       smp_fetch_sc_clr_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_conn_cnt",       smp_fetch_sc_conn_cnt,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_conn_cur",       smp_fetch_sc_conn_cur,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_conn_rate",      smp_fetch_sc_conn_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_get_gpc0",       smp_fetch_sc_get_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_gpc0_rate",      smp_fetch_sc_gpc0_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_http_err_cnt",   smp_fetch_sc_http_err_cnt,   ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_http_err_rate",  smp_fetch_sc_http_err_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_http_req_cnt",   smp_fetch_sc_http_req_cnt,   ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_http_req_rate",  smp_fetch_sc_http_req_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_inc_gpc0",       smp_fetch_sc_inc_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_kbytes_in",      smp_fetch_sc_kbytes_in,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc1_kbytes_out",     smp_fetch_sc_kbytes_out,     ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc1_sess_cnt",       smp_fetch_sc_sess_cnt,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_sess_rate",      smp_fetch_sc_sess_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc1_tracked",        smp_fetch_sc_tracked,        ARG1(0,TAB),      NULL, SMP_T_BOOL, SMP_USE_INTRN, },
	{ "sc1_trackers",       smp_fetch_sc_trackers,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_bytes_in_rate",  smp_fetch_sc_bytes_in_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_clr_gpc0",       smp_fetch_sc_clr_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_conn_cnt",       smp_fetch_sc_conn_cnt,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_conn_cur",       smp_fetch_sc_conn_cur,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_conn_rate",      smp_fetch_sc_conn_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_get_gpc0",       smp_fetch_sc_get_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_gpc0_rate",      smp_fetch_sc_gpc0_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_http_err_cnt",   smp_fetch_sc_http_err_cnt,   ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_http_err_rate",  smp_fetch_sc_http_err_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_http_req_cnt",   smp_fetch_sc_http_req_cnt,   ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_http_req_rate",  smp_fetch_sc_http_req_rate,  ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_inc_gpc0",       smp_fetch_sc_inc_gpc0,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_kbytes_in",      smp_fetch_sc_kbytes_in,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc2_kbytes_out",     smp_fetch_sc_kbytes_out,     ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "sc2_sess_cnt",       smp_fetch_sc_sess_cnt,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_sess_rate",      smp_fetch_sc_sess_rate,      ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "sc2_tracked",        smp_fetch_sc_tracked,        ARG1(0,TAB),      NULL, SMP_T_BOOL, SMP_USE_INTRN, },
	{ "sc2_trackers",       smp_fetch_sc_trackers,       ARG1(0,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "src_bytes_in_rate",  smp_fetch_sc_bytes_in_rate,  ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_clr_gpc0",       smp_fetch_sc_clr_gpc0,       ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_conn_cnt",       smp_fetch_sc_conn_cnt,       ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_conn_cur",       smp_fetch_sc_conn_cur,       ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_conn_rate",      smp_fetch_sc_conn_rate,      ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_get_gpc0",       smp_fetch_sc_get_gpc0,       ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_gpc0_rate",      smp_fetch_sc_gpc0_rate,      ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_http_err_cnt",   smp_fetch_sc_http_err_cnt,   ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_http_err_rate",  smp_fetch_sc_http_err_rate,  ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_http_req_cnt",   smp_fetch_sc_http_req_cnt,   ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_http_req_rate",  smp_fetch_sc_http_req_rate,  ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_inc_gpc0",       smp_fetch_sc_inc_gpc0,       ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_kbytes_in",      smp_fetch_sc_kbytes_in,      ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_kbytes_out",     smp_fetch_sc_kbytes_out,     ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_sess_cnt",       smp_fetch_sc_sess_cnt,       ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_sess_rate",      smp_fetch_sc_sess_rate,      ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "src_updt_conn_cnt",  smp_fetch_src_updt_conn_cnt, ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_L4CLI, },
	{ "table_avl",          smp_fetch_table_avl,         ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ "table_cnt",          smp_fetch_table_cnt,         ARG1(1,TAB),      NULL, SMP_T_UINT, SMP_USE_INTRN, },
	{ /* END */ },
}};

__attribute__((constructor))
static void __session_init(void)
{
	sample_register_fetches(&smp_fetch_keywords);
	acl_register_keywords(&acl_kws);
}

/*
 * Local variables:
 *  c-indent-level: 8
 *  c-basic-offset: 8
 * End:
 */