1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*
* fast fgets() replacement for log parsing
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* This function manages its own buffer and returns a pointer to that buffer
* in order to avoid expensive memory copies. It also checks for line breaks
* 32 or 64 bits at a time. It could be improved a lot using mmap() but we
* would not be allowed to replace trailing \n with zeroes and we would be
* limited to small log files on 32-bit machines.
*
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#ifndef FGETS2_BUFSIZE
#define FGETS2_BUFSIZE (256*1024)
#endif
/* memchr() is faster in glibc with SSE since commit 093ecf92998de2 */
#if defined(__x86_64__) && defined(__GLIBC__) && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 15))
#define USE_MEMCHR
#endif
/* return non-zero if the integer contains at least one zero byte */
static inline __attribute__((unused)) unsigned int has_zero32(unsigned int x)
{
unsigned int y;
/* Principle: we want to perform 4 tests on one 32-bit int at once. For
* this, we have to simulate an SIMD instruction which we don't have by
* default. The principle is that a zero byte is the only one which
* will cause a 1 to appear on the upper bit of a byte/word/etc... when
* we subtract 1. So we can detect a zero byte if a one appears at any
* of the bits 7, 15, 23 or 31 where it was not. It takes only one
* instruction to test for the presence of any of these bits, but it is
* still complex to check for their initial absence. Thus, we'll
* proceed differently : we first save and clear only those bits, then
* we check in the final result if one of them is present and was not.
* The order of operations below is important to save registers and
* tests. The result is used as a boolean, so the last test must apply
* on the constant so that it can efficiently be inlined.
*/
#if defined(__i386__)
/* gcc on x86 loves copying registers over and over even on code that
* simple, so let's do it by hand to prevent it from doing so :-(
*/
asm("lea -0x01010101(%0),%1\n"
"not %0\n"
"and %1,%0\n"
: "=a" (x), "=r"(y)
: "0" (x)
);
return x & 0x80808080;
#else
y = x - 0x01010101; /* generate a carry */
x = ~x & y; /* clear the bits that were already set */
return x & 0x80808080;
#endif
}
/* return non-zero if the argument contains at least one zero byte. See principle above. */
static inline __attribute__((unused)) unsigned long long has_zero64(unsigned long long x)
{
unsigned long long y;
y = x - 0x0101010101010101ULL; /* generate a carry */
y &= ~x; /* clear the bits that were already set */
return y & 0x8080808080808080ULL;
}
static inline __attribute__((unused)) unsigned long has_zero(unsigned long x)
{
return (sizeof(x) == 8) ? has_zero64(x) : has_zero32(x);
}
/* find a '\n' between <next> and <end>. Warning: may read slightly past <end>.
* If no '\n' is found, <end> is returned.
*/
static char *find_lf(char *next, char *end)
{
#if defined USE_MEMCHR
/* some recent libc use platform-specific optimizations to provide more
* efficient byte search than below (eg: glibc 2.11 on x86_64).
*/
next = memchr(next, '\n', end - next);
if (!next)
next = end;
#else
if (sizeof(long) == 4) { /* 32-bit system */
/* this is a speed-up, we read 32 bits at once and check for an
* LF character there. We stop if found then continue one at a
* time.
*/
while (next < end && (((unsigned long)next) & 3) && *next != '\n')
next++;
/* Now next is multiple of 4 or equal to end. We know we can safely
* read up to 32 bytes past end if needed because they're allocated.
*/
while (next < end) {
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
if (has_zero32(*(unsigned int *)next ^ 0x0A0A0A0A))
break;
next += 4;
}
}
else { /* 64-bit system */
/* this is a speed-up, we read 64 bits at once and check for an
* LF character there. We stop if found then continue one at a
* time.
*/
if (next <= end) {
/* max 3 bytes tested here */
while ((((unsigned long)next) & 3) && *next != '\n')
next++;
/* maybe we have can skip 4 more bytes */
if ((((unsigned long)next) & 4) && !has_zero32(*(unsigned int *)next ^ 0x0A0A0A0AU))
next += 4;
}
/* now next is multiple of 8 or equal to end */
while (next <= (end-68)) {
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
if (has_zero64(*(unsigned long long *)next ^ 0x0A0A0A0A0A0A0A0AULL))
break;
next += 8;
}
/* maybe we can skip 4 more bytes */
if (!has_zero32(*(unsigned int *)next ^ 0x0A0A0A0AU))
next += 4;
}
/* We finish if needed : if <next> is below <end>, it means we
* found an LF in one of the 4 following bytes.
*/
while (next < end) {
if (*next == '\n')
break;
next++;
}
#endif
return next;
}
const char *fgets2(FILE *stream)
{
static char buffer[FGETS2_BUFSIZE + 68]; /* Note: +32 is enough on 32-bit systems */
static char *end = buffer;
static char *line = buffer;
char *next;
int ret;
next = line;
while (1) {
next = find_lf(next, end);
if (next < end) {
const char *start = line;
*next = '\0';
line = next + 1;
return start;
}
/* we found an incomplete line. First, let's move the
* remaining part of the buffer to the beginning, then
* try to complete the buffer with a new read. We can't
* rely on <next> anymore because it went past <end>.
*/
if (line > buffer) {
if (end != line)
memmove(buffer, line, end - line);
end = buffer + (end - line);
next = end;
line = buffer;
} else {
if (end == buffer + FGETS2_BUFSIZE)
return NULL;
}
ret = read(fileno(stream), end, buffer + FGETS2_BUFSIZE - end);
if (ret <= 0) {
if (end == line)
return NULL;
*end = '\0';
end = line; /* ensure we stop next time */
return line;
}
end += ret;
*end = '\n'; /* make parser stop ASAP */
/* search for '\n' again */
}
}
#ifdef BENCHMARK
int main() {
const char *p;
unsigned int lines = 0;
while ((p=fgets2(stdin)))
lines++;
printf("lines=%u\n", lines);
return 0;
}
#endif
|