1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
/*
* Elastic Binary Trees - macros and structures for operations on 32bit nodes.
* Version 6.0.6
* (C) 2002-2011 - Willy Tarreau <w@1wt.eu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _EB32TREE_H
#define _EB32TREE_H
#include "ebtree.h"
/* Return the structure of type <type> whose member <member> points to <ptr> */
#define eb32_entry(ptr, type, member) container_of(ptr, type, member)
/*
* Exported functions and macros.
* Many of them are always inlined because they are extremely small, and
* are generally called at most once or twice in a program.
*/
/* Return leftmost node in the tree, or NULL if none */
static inline struct eb32_node *eb32_first(struct eb_root *root)
{
return eb32_entry(eb_first(root), struct eb32_node, node);
}
/* Return rightmost node in the tree, or NULL if none */
static inline struct eb32_node *eb32_last(struct eb_root *root)
{
return eb32_entry(eb_last(root), struct eb32_node, node);
}
/* Return next node in the tree, or NULL if none */
static inline struct eb32_node *eb32_next(struct eb32_node *eb32)
{
return eb32_entry(eb_next(&eb32->node), struct eb32_node, node);
}
/* Return previous node in the tree, or NULL if none */
static inline struct eb32_node *eb32_prev(struct eb32_node *eb32)
{
return eb32_entry(eb_prev(&eb32->node), struct eb32_node, node);
}
/* Return next leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct eb32_node *eb32_next_dup(struct eb32_node *eb32)
{
return eb32_entry(eb_next_dup(&eb32->node), struct eb32_node, node);
}
/* Return previous leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct eb32_node *eb32_prev_dup(struct eb32_node *eb32)
{
return eb32_entry(eb_prev_dup(&eb32->node), struct eb32_node, node);
}
/* Return next node in the tree, skipping duplicates, or NULL if none */
static inline struct eb32_node *eb32_next_unique(struct eb32_node *eb32)
{
return eb32_entry(eb_next_unique(&eb32->node), struct eb32_node, node);
}
/* Return previous node in the tree, skipping duplicates, or NULL if none */
static inline struct eb32_node *eb32_prev_unique(struct eb32_node *eb32)
{
return eb32_entry(eb_prev_unique(&eb32->node), struct eb32_node, node);
}
/* Delete node from the tree if it was linked in. Mark the node unused. Note
* that this function relies on a non-inlined generic function: eb_delete.
*/
static inline void eb32_delete(struct eb32_node *eb32)
{
eb_delete(&eb32->node);
}
/*
* The following functions are not inlined by default. They are declared
* in eb32tree.c, which simply relies on their inline version.
*/
struct eb32_node *eb32_lookup(struct eb_root *root, u32 x);
struct eb32_node *eb32i_lookup(struct eb_root *root, s32 x);
struct eb32_node *eb32_lookup_le(struct eb_root *root, u32 x);
struct eb32_node *eb32_lookup_ge(struct eb_root *root, u32 x);
struct eb32_node *eb32_insert(struct eb_root *root, struct eb32_node *new);
struct eb32_node *eb32i_insert(struct eb_root *root, struct eb32_node *new);
/*
* The following functions are less likely to be used directly, because their
* code is larger. The non-inlined version is preferred.
*/
/* Delete node from the tree if it was linked in. Mark the node unused. */
static forceinline void __eb32_delete(struct eb32_node *eb32)
{
__eb_delete(&eb32->node);
}
/*
* Find the first occurrence of a key in the tree <root>. If none can be
* found, return NULL.
*/
static forceinline struct eb32_node *__eb32_lookup(struct eb_root *root, u32 x)
{
struct eb32_node *node;
eb_troot_t *troot;
u32 y;
int node_bit;
troot = root->b[EB_LEFT];
if (unlikely(troot == NULL))
return NULL;
while (1) {
if ((eb_gettag(troot) == EB_LEAF)) {
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
if (node->key == x)
return node;
else
return NULL;
}
node = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
node_bit = node->node.bit;
y = node->key ^ x;
if (!y) {
/* Either we found the node which holds the key, or
* we have a dup tree. In the later case, we have to
* walk it down left to get the first entry.
*/
if (node_bit < 0) {
troot = node->node.branches.b[EB_LEFT];
while (eb_gettag(troot) != EB_LEAF)
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
}
return node;
}
if ((y >> node_bit) >= EB_NODE_BRANCHES)
return NULL; /* no more common bits */
troot = node->node.branches.b[(x >> node_bit) & EB_NODE_BRANCH_MASK];
}
}
/*
* Find the first occurrence of a signed key in the tree <root>. If none can
* be found, return NULL.
*/
static forceinline struct eb32_node *__eb32i_lookup(struct eb_root *root, s32 x)
{
struct eb32_node *node;
eb_troot_t *troot;
u32 key = x ^ 0x80000000;
u32 y;
int node_bit;
troot = root->b[EB_LEFT];
if (unlikely(troot == NULL))
return NULL;
while (1) {
if ((eb_gettag(troot) == EB_LEAF)) {
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
if (node->key == (u32)x)
return node;
else
return NULL;
}
node = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
node_bit = node->node.bit;
y = node->key ^ x;
if (!y) {
/* Either we found the node which holds the key, or
* we have a dup tree. In the later case, we have to
* walk it down left to get the first entry.
*/
if (node_bit < 0) {
troot = node->node.branches.b[EB_LEFT];
while (eb_gettag(troot) != EB_LEAF)
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
node = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
}
return node;
}
if ((y >> node_bit) >= EB_NODE_BRANCHES)
return NULL; /* no more common bits */
troot = node->node.branches.b[(key >> node_bit) & EB_NODE_BRANCH_MASK];
}
}
/* Insert eb32_node <new> into subtree starting at node root <root>.
* Only new->key needs be set with the key. The eb32_node is returned.
* If root->b[EB_RGHT]==1, the tree may only contain unique keys.
*/
static forceinline struct eb32_node *
__eb32_insert(struct eb_root *root, struct eb32_node *new) {
struct eb32_node *old;
unsigned int side;
eb_troot_t *troot, **up_ptr;
u32 newkey; /* caching the key saves approximately one cycle */
eb_troot_t *root_right;
eb_troot_t *new_left, *new_rght;
eb_troot_t *new_leaf;
int old_node_bit;
side = EB_LEFT;
troot = root->b[EB_LEFT];
root_right = root->b[EB_RGHT];
if (unlikely(troot == NULL)) {
/* Tree is empty, insert the leaf part below the left branch */
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
new->node.leaf_p = eb_dotag(root, EB_LEFT);
new->node.node_p = NULL; /* node part unused */
return new;
}
/* The tree descent is fairly easy :
* - first, check if we have reached a leaf node
* - second, check if we have gone too far
* - third, reiterate
* Everywhere, we use <new> for the node node we are inserting, <root>
* for the node we attach it to, and <old> for the node we are
* displacing below <new>. <troot> will always point to the future node
* (tagged with its type). <side> carries the side the node <new> is
* attached to below its parent, which is also where previous node
* was attached. <newkey> carries the key being inserted.
*/
newkey = new->key;
while (1) {
if (eb_gettag(troot) == EB_LEAF) {
/* insert above a leaf */
old = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
new->node.node_p = old->node.leaf_p;
up_ptr = &old->node.leaf_p;
break;
}
/* OK we're walking down this link */
old = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
old_node_bit = old->node.bit;
/* Stop going down when we don't have common bits anymore. We
* also stop in front of a duplicates tree because it means we
* have to insert above.
*/
if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
(((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
/* The tree did not contain the key, so we insert <new> before the node
* <old>, and set ->bit to designate the lowest bit position in <new>
* which applies to ->branches.b[].
*/
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
break;
}
/* walk down */
root = &old->node.branches;
side = (newkey >> old_node_bit) & EB_NODE_BRANCH_MASK;
troot = root->b[side];
}
new_left = eb_dotag(&new->node.branches, EB_LEFT);
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
/* We need the common higher bits between new->key and old->key.
* What differences are there between new->key and the node here ?
* NOTE that bit(new) is always < bit(root) because highest
* bit of new->key and old->key are identical here (otherwise they
* would sit on different branches).
*/
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
if (new->key == old->key) {
new->node.bit = -1; /* mark as new dup tree, just in case */
if (likely(eb_gettag(root_right))) {
/* we refuse to duplicate this key if the tree is
* tagged as containing only unique keys.
*/
return old;
}
if (eb_gettag(troot) != EB_LEAF) {
/* there was already a dup tree below */
struct eb_node *ret;
ret = eb_insert_dup(&old->node, &new->node);
return container_of(ret, struct eb32_node, node);
}
/* otherwise fall through */
}
if (new->key >= old->key) {
new->node.branches.b[EB_LEFT] = troot;
new->node.branches.b[EB_RGHT] = new_leaf;
new->node.leaf_p = new_rght;
*up_ptr = new_left;
}
else {
new->node.branches.b[EB_LEFT] = new_leaf;
new->node.branches.b[EB_RGHT] = troot;
new->node.leaf_p = new_left;
*up_ptr = new_rght;
}
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
* parent is already set to <new>, and the <root>'s branch is still in
* <side>. Update the root's leaf till we have it. Note that we can also
* find the side by checking the side of new->node.node_p.
*/
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
return new;
}
/* Insert eb32_node <new> into subtree starting at node root <root>, using
* signed keys. Only new->key needs be set with the key. The eb32_node
* is returned. If root->b[EB_RGHT]==1, the tree may only contain unique keys.
*/
static forceinline struct eb32_node *
__eb32i_insert(struct eb_root *root, struct eb32_node *new) {
struct eb32_node *old;
unsigned int side;
eb_troot_t *troot, **up_ptr;
int newkey; /* caching the key saves approximately one cycle */
eb_troot_t *root_right;
eb_troot_t *new_left, *new_rght;
eb_troot_t *new_leaf;
int old_node_bit;
side = EB_LEFT;
troot = root->b[EB_LEFT];
root_right = root->b[EB_RGHT];
if (unlikely(troot == NULL)) {
/* Tree is empty, insert the leaf part below the left branch */
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
new->node.leaf_p = eb_dotag(root, EB_LEFT);
new->node.node_p = NULL; /* node part unused */
return new;
}
/* The tree descent is fairly easy :
* - first, check if we have reached a leaf node
* - second, check if we have gone too far
* - third, reiterate
* Everywhere, we use <new> for the node node we are inserting, <root>
* for the node we attach it to, and <old> for the node we are
* displacing below <new>. <troot> will always point to the future node
* (tagged with its type). <side> carries the side the node <new> is
* attached to below its parent, which is also where previous node
* was attached. <newkey> carries a high bit shift of the key being
* inserted in order to have negative keys stored before positive
* ones.
*/
newkey = new->key + 0x80000000;
while (1) {
if (eb_gettag(troot) == EB_LEAF) {
old = container_of(eb_untag(troot, EB_LEAF),
struct eb32_node, node.branches);
new->node.node_p = old->node.leaf_p;
up_ptr = &old->node.leaf_p;
break;
}
/* OK we're walking down this link */
old = container_of(eb_untag(troot, EB_NODE),
struct eb32_node, node.branches);
old_node_bit = old->node.bit;
/* Stop going down when we don't have common bits anymore. We
* also stop in front of a duplicates tree because it means we
* have to insert above.
*/
if ((old_node_bit < 0) || /* we're above a duplicate tree, stop here */
(((new->key ^ old->key) >> old_node_bit) >= EB_NODE_BRANCHES)) {
/* The tree did not contain the key, so we insert <new> before the node
* <old>, and set ->bit to designate the lowest bit position in <new>
* which applies to ->branches.b[].
*/
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
break;
}
/* walk down */
root = &old->node.branches;
side = (newkey >> old_node_bit) & EB_NODE_BRANCH_MASK;
troot = root->b[side];
}
new_left = eb_dotag(&new->node.branches, EB_LEFT);
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
/* We need the common higher bits between new->key and old->key.
* What differences are there between new->key and the node here ?
* NOTE that bit(new) is always < bit(root) because highest
* bit of new->key and old->key are identical here (otherwise they
* would sit on different branches).
*/
// note that if EB_NODE_BITS > 1, we should check that it's still >= 0
new->node.bit = flsnz(new->key ^ old->key) - EB_NODE_BITS;
if (new->key == old->key) {
new->node.bit = -1; /* mark as new dup tree, just in case */
if (likely(eb_gettag(root_right))) {
/* we refuse to duplicate this key if the tree is
* tagged as containing only unique keys.
*/
return old;
}
if (eb_gettag(troot) != EB_LEAF) {
/* there was already a dup tree below */
struct eb_node *ret;
ret = eb_insert_dup(&old->node, &new->node);
return container_of(ret, struct eb32_node, node);
}
/* otherwise fall through */
}
if ((s32)new->key >= (s32)old->key) {
new->node.branches.b[EB_LEFT] = troot;
new->node.branches.b[EB_RGHT] = new_leaf;
new->node.leaf_p = new_rght;
*up_ptr = new_left;
}
else {
new->node.branches.b[EB_LEFT] = new_leaf;
new->node.branches.b[EB_RGHT] = troot;
new->node.leaf_p = new_left;
*up_ptr = new_rght;
}
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
* parent is already set to <new>, and the <root>'s branch is still in
* <side>. Update the root's leaf till we have it. Note that we can also
* find the side by checking the side of new->node.node_p.
*/
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
return new;
}
#endif /* _EB32_TREE_H */
|