1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
/*
* Elastic Binary Trees - macros and structures for Multi-Byte data nodes.
* Version 6.0.6
* (C) 2002-2011 - Willy Tarreau <w@1wt.eu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _EBMBTREE_H
#define _EBMBTREE_H
#include <string.h>
#include "ebtree.h"
/* Return the structure of type <type> whose member <member> points to <ptr> */
#define ebmb_entry(ptr, type, member) container_of(ptr, type, member)
/*
* Exported functions and macros.
* Many of them are always inlined because they are extremely small, and
* are generally called at most once or twice in a program.
*/
/* Return leftmost node in the tree, or NULL if none */
static forceinline struct ebmb_node *ebmb_first(struct eb_root *root)
{
return ebmb_entry(eb_first(root), struct ebmb_node, node);
}
/* Return rightmost node in the tree, or NULL if none */
static forceinline struct ebmb_node *ebmb_last(struct eb_root *root)
{
return ebmb_entry(eb_last(root), struct ebmb_node, node);
}
/* Return next node in the tree, or NULL if none */
static forceinline struct ebmb_node *ebmb_next(struct ebmb_node *ebmb)
{
return ebmb_entry(eb_next(&ebmb->node), struct ebmb_node, node);
}
/* Return previous node in the tree, or NULL if none */
static forceinline struct ebmb_node *ebmb_prev(struct ebmb_node *ebmb)
{
return ebmb_entry(eb_prev(&ebmb->node), struct ebmb_node, node);
}
/* Return next leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct ebmb_node *ebmb_next_dup(struct ebmb_node *ebmb)
{
return ebmb_entry(eb_next_dup(&ebmb->node), struct ebmb_node, node);
}
/* Return previous leaf node within a duplicate sub-tree, or NULL if none. */
static inline struct ebmb_node *ebmb_prev_dup(struct ebmb_node *ebmb)
{
return ebmb_entry(eb_prev_dup(&ebmb->node), struct ebmb_node, node);
}
/* Return next node in the tree, skipping duplicates, or NULL if none */
static forceinline struct ebmb_node *ebmb_next_unique(struct ebmb_node *ebmb)
{
return ebmb_entry(eb_next_unique(&ebmb->node), struct ebmb_node, node);
}
/* Return previous node in the tree, skipping duplicates, or NULL if none */
static forceinline struct ebmb_node *ebmb_prev_unique(struct ebmb_node *ebmb)
{
return ebmb_entry(eb_prev_unique(&ebmb->node), struct ebmb_node, node);
}
/* Delete node from the tree if it was linked in. Mark the node unused. Note
* that this function relies on a non-inlined generic function: eb_delete.
*/
static forceinline void ebmb_delete(struct ebmb_node *ebmb)
{
eb_delete(&ebmb->node);
}
/* The following functions are not inlined by default. They are declared
* in ebmbtree.c, which simply relies on their inline version.
*/
struct ebmb_node *ebmb_lookup(struct eb_root *root, const void *x, unsigned int len);
struct ebmb_node *ebmb_insert(struct eb_root *root, struct ebmb_node *new, unsigned int len);
struct ebmb_node *ebmb_lookup_longest(struct eb_root *root, const void *x);
struct ebmb_node *ebmb_lookup_prefix(struct eb_root *root, const void *x, unsigned int pfx);
struct ebmb_node *ebmb_insert_prefix(struct eb_root *root, struct ebmb_node *new, unsigned int len);
/* start from a valid leaf and find the next matching prefix that's either a
* duplicate, or immediately shorter than the node's current one and still
* matches it. The purpose is to permit a caller that is not satisfied with a
* result provided by ebmb_lookup_longest() to evaluate the next matching
* entry. Given that shorter keys are necessarily attached to nodes located
* above the current one, it's sufficient to restart from the current leaf and
* go up until we find a shorter prefix, or a non-matching one.
*/
static inline struct ebmb_node *ebmb_lookup_shorter(struct ebmb_node *start)
{
eb_troot_t *t = start->node.leaf_p;
struct ebmb_node *node;
/* first, check for duplicates */
node = ebmb_next_dup(start);
if (node)
return node;
while (1) {
if (eb_gettag(t) == EB_LEFT) {
/* Walking up from left branch. We must ensure that we never
* walk beyond root.
*/
if (unlikely(eb_clrtag((eb_untag(t, EB_LEFT))->b[EB_RGHT]) == NULL))
return NULL;
node = container_of(eb_root_to_node(eb_untag(t, EB_LEFT)), struct ebmb_node, node);
} else {
/* Walking up from right branch, so we cannot be below
* root. However, if we end up on a node with an even
* and positive bit, this is a cover node, which mandates
* that the left branch only contains cover values, so we
* must descend it.
*/
node = container_of(eb_root_to_node(eb_untag(t, EB_RGHT)), struct ebmb_node, node);
if (node->node.bit > 0 && !(node->node.bit & 1))
return ebmb_entry(eb_walk_down(t, EB_LEFT), struct ebmb_node, node);
}
/* Note that <t> cannot be NULL at this stage */
t = node->node.node_p;
/* this is a node attached to a deeper (and possibly different)
* leaf, not interesting for us.
*/
if (node->node.pfx >= start->node.pfx)
continue;
if (check_bits(start->key, node->key, 0, node->node.pfx) == 0)
break;
}
return node;
}
/* The following functions are less likely to be used directly, because their
* code is larger. The non-inlined version is preferred.
*/
/* Delete node from the tree if it was linked in. Mark the node unused. */
static forceinline void __ebmb_delete(struct ebmb_node *ebmb)
{
__eb_delete(&ebmb->node);
}
/* Find the first occurrence of a key of a least <len> bytes matching <x> in the
* tree <root>. The caller is responsible for ensuring that <len> will not exceed
* the common parts between the tree's keys and <x>. In case of multiple matches,
* the leftmost node is returned. This means that this function can be used to
* lookup string keys by prefix if all keys in the tree are zero-terminated. If
* no match is found, NULL is returned. Returns first node if <len> is zero.
*/
static forceinline struct ebmb_node *__ebmb_lookup(struct eb_root *root, const void *x, unsigned int len)
{
struct ebmb_node *node;
eb_troot_t *troot;
int pos, side;
int node_bit;
troot = root->b[EB_LEFT];
if (unlikely(troot == NULL))
goto ret_null;
if (unlikely(len == 0))
goto walk_down;
pos = 0;
while (1) {
if (eb_gettag(troot) == EB_LEAF) {
node = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
if (eb_memcmp(node->key + pos, x, len) != 0)
goto ret_null;
else
goto ret_node;
}
node = container_of(eb_untag(troot, EB_NODE),
struct ebmb_node, node.branches);
node_bit = node->node.bit;
if (node_bit < 0) {
/* We have a dup tree now. Either it's for the same
* value, and we walk down left, or it's a different
* one and we don't have our key.
*/
if (eb_memcmp(node->key + pos, x, len) != 0)
goto ret_null;
else
goto walk_left;
}
/* OK, normal data node, let's walk down. We check if all full
* bytes are equal, and we start from the last one we did not
* completely check. We stop as soon as we reach the last byte,
* because we must decide to go left/right or abort.
*/
node_bit = ~node_bit + (pos << 3) + 8; // = (pos<<3) + (7 - node_bit)
if (node_bit < 0) {
/* This surprising construction gives better performance
* because gcc does not try to reorder the loop. Tested to
* be fine with 2.95 to 4.2.
*/
while (1) {
if (node->key[pos++] ^ *(unsigned char*)(x++))
goto ret_null; /* more than one full byte is different */
if (--len == 0)
goto walk_left; /* return first node if all bytes matched */
node_bit += 8;
if (node_bit >= 0)
break;
}
}
/* here we know that only the last byte differs, so node_bit < 8.
* We have 2 possibilities :
* - more than the last bit differs => return NULL
* - walk down on side = (x[pos] >> node_bit) & 1
*/
side = *(unsigned char *)x >> node_bit;
if (((node->key[pos] >> node_bit) ^ side) > 1)
goto ret_null;
side &= 1;
troot = node->node.branches.b[side];
}
walk_left:
troot = node->node.branches.b[EB_LEFT];
walk_down:
while (eb_gettag(troot) != EB_LEAF)
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
node = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
ret_node:
return node;
ret_null:
return NULL;
}
/* Insert ebmb_node <new> into subtree starting at node root <root>.
* Only new->key needs be set with the key. The ebmb_node is returned.
* If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
* len is specified in bytes. It is absolutely mandatory that this length
* is the same for all keys in the tree. This function cannot be used to
* insert strings.
*/
static forceinline struct ebmb_node *
__ebmb_insert(struct eb_root *root, struct ebmb_node *new, unsigned int len)
{
struct ebmb_node *old;
unsigned int side;
eb_troot_t *troot, **up_ptr;
eb_troot_t *root_right;
int diff;
int bit;
eb_troot_t *new_left, *new_rght;
eb_troot_t *new_leaf;
int old_node_bit;
side = EB_LEFT;
troot = root->b[EB_LEFT];
root_right = root->b[EB_RGHT];
if (unlikely(troot == NULL)) {
/* Tree is empty, insert the leaf part below the left branch */
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
new->node.leaf_p = eb_dotag(root, EB_LEFT);
new->node.node_p = NULL; /* node part unused */
return new;
}
/* The tree descent is fairly easy :
* - first, check if we have reached a leaf node
* - second, check if we have gone too far
* - third, reiterate
* Everywhere, we use <new> for the node node we are inserting, <root>
* for the node we attach it to, and <old> for the node we are
* displacing below <new>. <troot> will always point to the future node
* (tagged with its type). <side> carries the side the node <new> is
* attached to below its parent, which is also where previous node
* was attached.
*/
bit = 0;
while (1) {
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
/* insert above a leaf */
old = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
new->node.node_p = old->node.leaf_p;
up_ptr = &old->node.leaf_p;
goto check_bit_and_break;
}
/* OK we're walking down this link */
old = container_of(eb_untag(troot, EB_NODE),
struct ebmb_node, node.branches);
old_node_bit = old->node.bit;
if (unlikely(old->node.bit < 0)) {
/* We're above a duplicate tree, so we must compare the whole value */
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
check_bit_and_break:
bit = equal_bits(new->key, old->key, bit, len << 3);
break;
}
/* Stop going down when we don't have common bits anymore. We
* also stop in front of a duplicates tree because it means we
* have to insert above. Note: we can compare more bits than
* the current node's because as long as they are identical, we
* know we descend along the correct side.
*/
bit = equal_bits(new->key, old->key, bit, old_node_bit);
if (unlikely(bit < old_node_bit)) {
/* The tree did not contain the key, so we insert <new> before the
* node <old>, and set ->bit to designate the lowest bit position in
* <new> which applies to ->branches.b[].
*/
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
break;
}
/* we don't want to skip bits for further comparisons, so we must limit <bit>.
* However, since we're going down around <old_node_bit>, we know it will be
* properly matched, so we can skip this bit.
*/
bit = old_node_bit + 1;
/* walk down */
root = &old->node.branches;
side = old_node_bit & 7;
side ^= 7;
side = (new->key[old_node_bit >> 3] >> side) & 1;
troot = root->b[side];
}
new_left = eb_dotag(&new->node.branches, EB_LEFT);
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
new->node.bit = bit;
/* Note: we can compare more bits than the current node's because as
* long as they are identical, we know we descend along the correct
* side. However we don't want to start to compare past the end.
*/
diff = 0;
if (((unsigned)bit >> 3) < len)
diff = cmp_bits(new->key, old->key, bit);
if (diff == 0) {
new->node.bit = -1; /* mark as new dup tree, just in case */
if (likely(eb_gettag(root_right))) {
/* we refuse to duplicate this key if the tree is
* tagged as containing only unique keys.
*/
return old;
}
if (eb_gettag(troot) != EB_LEAF) {
/* there was already a dup tree below */
struct eb_node *ret;
ret = eb_insert_dup(&old->node, &new->node);
return container_of(ret, struct ebmb_node, node);
}
/* otherwise fall through */
}
if (diff >= 0) {
new->node.branches.b[EB_LEFT] = troot;
new->node.branches.b[EB_RGHT] = new_leaf;
new->node.leaf_p = new_rght;
*up_ptr = new_left;
}
else {
new->node.branches.b[EB_LEFT] = new_leaf;
new->node.branches.b[EB_RGHT] = troot;
new->node.leaf_p = new_left;
*up_ptr = new_rght;
}
/* Ok, now we are inserting <new> between <root> and <old>. <old>'s
* parent is already set to <new>, and the <root>'s branch is still in
* <side>. Update the root's leaf till we have it. Note that we can also
* find the side by checking the side of new->node.node_p.
*/
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
return new;
}
/* Find the first occurrence of the longest prefix matching a key <x> in the
* tree <root>. It's the caller's responsibility to ensure that key <x> is at
* least as long as the keys in the tree. Note that this can be ensured by
* having a byte at the end of <x> which cannot be part of any prefix, typically
* the trailing zero for a string. If none can be found, return NULL.
*/
static forceinline struct ebmb_node *__ebmb_lookup_longest(struct eb_root *root, const void *x)
{
struct ebmb_node *node;
eb_troot_t *troot, *cover;
int pos, side;
int node_bit;
troot = root->b[EB_LEFT];
if (unlikely(troot == NULL))
return NULL;
cover = NULL;
pos = 0;
while (1) {
if ((eb_gettag(troot) == EB_LEAF)) {
node = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
if (check_bits(x - pos, node->key, pos, node->node.pfx))
goto not_found;
return node;
}
node = container_of(eb_untag(troot, EB_NODE),
struct ebmb_node, node.branches);
node_bit = node->node.bit;
if (node_bit < 0) {
/* We have a dup tree now. Either it's for the same
* value, and we walk down left, or it's a different
* one and we don't have our key.
*/
if (check_bits(x - pos, node->key, pos, node->node.pfx))
goto not_found;
troot = node->node.branches.b[EB_LEFT];
while (eb_gettag(troot) != EB_LEAF)
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
node = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
return node;
}
node_bit >>= 1; /* strip cover bit */
node_bit = ~node_bit + (pos << 3) + 8; // = (pos<<3) + (7 - node_bit)
if (node_bit < 0) {
/* This uncommon construction gives better performance
* because gcc does not try to reorder the loop. Tested to
* be fine with 2.95 to 4.2.
*/
while (1) {
x++; pos++;
if (node->key[pos-1] ^ *(unsigned char*)(x-1))
goto not_found; /* more than one full byte is different */
node_bit += 8;
if (node_bit >= 0)
break;
}
}
/* here we know that only the last byte differs, so 0 <= node_bit <= 7.
* We have 2 possibilities :
* - more than the last bit differs => data does not match
* - walk down on side = (x[pos] >> node_bit) & 1
*/
side = *(unsigned char *)x >> node_bit;
if (((node->key[pos] >> node_bit) ^ side) > 1)
goto not_found;
if (!(node->node.bit & 1)) {
/* This is a cover node, let's keep a reference to it
* for later. The covering subtree is on the left, and
* the covered subtree is on the right, so we have to
* walk down right.
*/
cover = node->node.branches.b[EB_LEFT];
troot = node->node.branches.b[EB_RGHT];
continue;
}
side &= 1;
troot = node->node.branches.b[side];
}
not_found:
/* Walk down last cover tree if it exists. It does not matter if cover is NULL */
return ebmb_entry(eb_walk_down(cover, EB_LEFT), struct ebmb_node, node);
}
/* Find the first occurrence of a prefix matching a key <x> of <pfx> BITS in the
* tree <root>. It's the caller's responsibility to ensure that key <x> is at
* least as long as the keys in the tree. Note that this can be ensured by
* having a byte at the end of <x> which cannot be part of any prefix, typically
* the trailing zero for a string. If none can be found, return NULL.
*/
static forceinline struct ebmb_node *__ebmb_lookup_prefix(struct eb_root *root, const void *x, unsigned int pfx)
{
struct ebmb_node *node;
eb_troot_t *troot;
int pos, side;
int node_bit;
troot = root->b[EB_LEFT];
if (unlikely(troot == NULL))
return NULL;
pos = 0;
while (1) {
if ((eb_gettag(troot) == EB_LEAF)) {
node = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
if (node->node.pfx != pfx)
return NULL;
if (check_bits(x - pos, node->key, pos, node->node.pfx))
return NULL;
return node;
}
node = container_of(eb_untag(troot, EB_NODE),
struct ebmb_node, node.branches);
node_bit = node->node.bit;
if (node_bit < 0) {
/* We have a dup tree now. Either it's for the same
* value, and we walk down left, or it's a different
* one and we don't have our key.
*/
if (node->node.pfx != pfx)
return NULL;
if (check_bits(x - pos, node->key, pos, node->node.pfx))
return NULL;
troot = node->node.branches.b[EB_LEFT];
while (eb_gettag(troot) != EB_LEAF)
troot = (eb_untag(troot, EB_NODE))->b[EB_LEFT];
node = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
return node;
}
node_bit >>= 1; /* strip cover bit */
node_bit = ~node_bit + (pos << 3) + 8; // = (pos<<3) + (7 - node_bit)
if (node_bit < 0) {
/* This uncommon construction gives better performance
* because gcc does not try to reorder the loop. Tested to
* be fine with 2.95 to 4.2.
*/
while (1) {
x++; pos++;
if (node->key[pos-1] ^ *(unsigned char*)(x-1))
return NULL; /* more than one full byte is different */
node_bit += 8;
if (node_bit >= 0)
break;
}
}
/* here we know that only the last byte differs, so 0 <= node_bit <= 7.
* We have 2 possibilities :
* - more than the last bit differs => data does not match
* - walk down on side = (x[pos] >> node_bit) & 1
*/
side = *(unsigned char *)x >> node_bit;
if (((node->key[pos] >> node_bit) ^ side) > 1)
return NULL;
if (!(node->node.bit & 1)) {
/* This is a cover node, it may be the entry we're
* looking for. We already know that it matches all the
* bits, let's compare prefixes and descend the cover
* subtree if they match.
*/
if ((unsigned short)node->node.bit >> 1 == pfx)
troot = node->node.branches.b[EB_LEFT];
else
troot = node->node.branches.b[EB_RGHT];
continue;
}
side &= 1;
troot = node->node.branches.b[side];
}
}
/* Insert ebmb_node <new> into a prefix subtree starting at node root <root>.
* Only new->key and new->pfx need be set with the key and its prefix length.
* Note that bits between <pfx> and <len> are theoretically ignored and should be
* zero, as it is not certain yet that they will always be ignored everywhere
* (eg in bit compare functions).
* The ebmb_node is returned.
* If root->b[EB_RGHT]==1, the tree may only contain unique keys. The
* len is specified in bytes.
*/
static forceinline struct ebmb_node *
__ebmb_insert_prefix(struct eb_root *root, struct ebmb_node *new, unsigned int len)
{
struct ebmb_node *old;
unsigned int side;
eb_troot_t *troot, **up_ptr;
eb_troot_t *root_right;
int diff;
int bit;
eb_troot_t *new_left, *new_rght;
eb_troot_t *new_leaf;
int old_node_bit;
unsigned int npfx = new->node.pfx;
unsigned int npfx1 = npfx << 1;
const unsigned char *nkey = new->key;
side = EB_LEFT;
troot = root->b[EB_LEFT];
root_right = root->b[EB_RGHT];
if (unlikely(troot == NULL)) {
/* Tree is empty, insert the leaf part below the left branch */
root->b[EB_LEFT] = eb_dotag(&new->node.branches, EB_LEAF);
new->node.leaf_p = eb_dotag(root, EB_LEFT);
new->node.node_p = NULL; /* node part unused */
return new;
}
len <<= 3;
if (len > npfx)
len = npfx;
/* The tree descent is fairly easy :
* - first, check if we have reached a leaf node
* - second, check if we have gone too far
* - third, reiterate
* Everywhere, we use <new> for the node node we are inserting, <root>
* for the node we attach it to, and <old> for the node we are
* displacing below <new>. <troot> will always point to the future node
* (tagged with its type). <side> carries the side the node <new> is
* attached to below its parent, which is also where previous node
* was attached.
*/
bit = 0;
while (1) {
if (unlikely(eb_gettag(troot) == EB_LEAF)) {
/* Insert above a leaf. Note that this leaf could very
* well be part of a cover node.
*/
old = container_of(eb_untag(troot, EB_LEAF),
struct ebmb_node, node.branches);
new->node.node_p = old->node.leaf_p;
up_ptr = &old->node.leaf_p;
goto check_bit_and_break;
}
/* OK we're walking down this link */
old = container_of(eb_untag(troot, EB_NODE),
struct ebmb_node, node.branches);
old_node_bit = old->node.bit;
/* Note that old_node_bit can be :
* < 0 : dup tree
* = 2N : cover node for N bits
* = 2N+1 : normal node at N bits
*/
if (unlikely(old_node_bit < 0)) {
/* We're above a duplicate tree, so we must compare the whole value */
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
check_bit_and_break:
/* No need to compare everything if the leaves are shorter than the new one. */
if (len > old->node.pfx)
len = old->node.pfx;
bit = equal_bits(nkey, old->key, bit, len);
break;
}
/* WARNING: for the two blocks below, <bit> is counted in half-bits */
bit = equal_bits(nkey, old->key, bit, old_node_bit >> 1);
bit = (bit << 1) + 1; // assume comparisons with normal nodes
/* we must always check that our prefix is larger than the nodes
* we visit, otherwise we have to stop going down. The following
* test is able to stop before both normal and cover nodes.
*/
if (bit >= npfx1 && npfx1 < old_node_bit) {
/* insert cover node here on the left */
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
new->node.bit = npfx1;
diff = -1;
goto insert_above;
}
if (unlikely(bit < old_node_bit)) {
/* The tree did not contain the key, so we insert <new> before the
* node <old>, and set ->bit to designate the lowest bit position in
* <new> which applies to ->branches.b[]. We know that the bit is not
* greater than the prefix length thanks to the test above.
*/
new->node.node_p = old->node.node_p;
up_ptr = &old->node.node_p;
new->node.bit = bit;
diff = cmp_bits(nkey, old->key, bit >> 1);
goto insert_above;
}
if (!(old_node_bit & 1)) {
/* if we encounter a cover node with our exact prefix length, it's
* necessarily the same value, so we insert there as a duplicate on
* the left. For that, we go down on the left and the leaf detection
* code will finish the job.
*/
if (npfx1 == old_node_bit) {
root = &old->node.branches;
side = EB_LEFT;
troot = root->b[side];
continue;
}
/* cover nodes are always walked through on the right */
side = EB_RGHT;
bit = old_node_bit >> 1; /* recheck that bit */
root = &old->node.branches;
troot = root->b[side];
continue;
}
/* we don't want to skip bits for further comparisons, so we must limit <bit>.
* However, since we're going down around <old_node_bit>, we know it will be
* properly matched, so we can skip this bit.
*/
old_node_bit >>= 1;
bit = old_node_bit + 1;
/* walk down */
root = &old->node.branches;
side = old_node_bit & 7;
side ^= 7;
side = (nkey[old_node_bit >> 3] >> side) & 1;
troot = root->b[side];
}
/* Right here, we have 4 possibilities :
* - the tree does not contain any leaf matching the
* key, and we have new->key < old->key. We insert
* new above old, on the left ;
*
* - the tree does not contain any leaf matching the
* key, and we have new->key > old->key. We insert
* new above old, on the right ;
*
* - the tree does contain the key with the same prefix
* length. We add the new key next to it as a first
* duplicate (since it was alone).
*
* The last two cases can easily be partially merged.
*
* - the tree contains a leaf matching the key, we have
* to insert above it as a cover node. The leaf with
* the shortest prefix becomes the left subtree and
* the leaf with the longest prefix becomes the right
* one. The cover node gets the min of both prefixes
* as its new bit.
*/
/* first we want to ensure that we compare the correct bit, which means
* the largest common to both nodes.
*/
if (bit > npfx)
bit = npfx;
if (bit > old->node.pfx)
bit = old->node.pfx;
new->node.bit = (bit << 1) + 1; /* assume normal node by default */
/* if one prefix is included in the second one, we don't compare bits
* because they won't necessarily match, we just proceed with a cover
* node insertion.
*/
diff = 0;
if (bit < old->node.pfx && bit < npfx)
diff = cmp_bits(nkey, old->key, bit);
if (diff == 0) {
/* Both keys match. Either it's a duplicate entry or we have to
* put the shortest prefix left and the largest one right below
* a new cover node. By default, diff==0 means we'll be inserted
* on the right.
*/
new->node.bit--; /* anticipate cover node insertion */
if (npfx == old->node.pfx) {
new->node.bit = -1; /* mark as new dup tree, just in case */
if (unlikely(eb_gettag(root_right))) {
/* we refuse to duplicate this key if the tree is
* tagged as containing only unique keys.
*/
return old;
}
if (eb_gettag(troot) != EB_LEAF) {
/* there was already a dup tree below */
struct eb_node *ret;
ret = eb_insert_dup(&old->node, &new->node);
return container_of(ret, struct ebmb_node, node);
}
/* otherwise fall through to insert first duplicate */
}
/* otherwise we just rely on the tests below to select the right side */
else if (npfx < old->node.pfx)
diff = -1; /* force insertion to left side */
}
insert_above:
new_left = eb_dotag(&new->node.branches, EB_LEFT);
new_rght = eb_dotag(&new->node.branches, EB_RGHT);
new_leaf = eb_dotag(&new->node.branches, EB_LEAF);
if (diff >= 0) {
new->node.branches.b[EB_LEFT] = troot;
new->node.branches.b[EB_RGHT] = new_leaf;
new->node.leaf_p = new_rght;
*up_ptr = new_left;
}
else {
new->node.branches.b[EB_LEFT] = new_leaf;
new->node.branches.b[EB_RGHT] = troot;
new->node.leaf_p = new_left;
*up_ptr = new_rght;
}
root->b[side] = eb_dotag(&new->node.branches, EB_NODE);
return new;
}
#endif /* _EBMBTREE_H */
|