1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
|
/* plock - progressive locks
*
* Copyright (C) 2012-2017 Willy Tarreau <w@1wt.eu>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef PL_PLOCK_H
#define PL_PLOCK_H
#include "atomic-ops.h"
#ifdef _POSIX_PRIORITY_SCHEDULING
#include <sched.h>
#endif
/* 64 bit */
#define PLOCK64_RL_1 0x0000000000000004ULL
#define PLOCK64_RL_2PL 0x00000000FFFFFFF8ULL
#define PLOCK64_RL_ANY 0x00000000FFFFFFFCULL
#define PLOCK64_SL_1 0x0000000100000000ULL
#define PLOCK64_SL_ANY 0x0000000300000000ULL
#define PLOCK64_WL_1 0x0000000400000000ULL
#define PLOCK64_WL_2PL 0xFFFFFFF800000000ULL
#define PLOCK64_WL_ANY 0xFFFFFFFC00000000ULL
/* 32 bit */
#define PLOCK32_RL_1 0x00000004
#define PLOCK32_RL_2PL 0x0000FFF8
#define PLOCK32_RL_ANY 0x0000FFFC
#define PLOCK32_SL_1 0x00010000
#define PLOCK32_SL_ANY 0x00030000
#define PLOCK32_WL_1 0x00040000
#define PLOCK32_WL_2PL 0xFFF80000
#define PLOCK32_WL_ANY 0xFFFC0000
/* dereferences <*p> as unsigned long without causing aliasing issues */
#define pl_deref_long(p) ({ volatile unsigned long *__pl_l = (unsigned long *)(p); *__pl_l; })
/* dereferences <*p> as unsigned int without causing aliasing issues */
#define pl_deref_int(p) ({ volatile unsigned int *__pl_i = (unsigned int *)(p); *__pl_i; })
/* This function waits for <lock> to release all bits covered by <mask>, and
* enforces an exponential backoff using CPU pauses to limit the pollution to
* the other threads' caches. The progression follows (1.5^N)-1, limited to
* 16384 iterations, which is way sufficient even for very large numbers of
* threads. It's possible to disable exponential backoff (EBO) for debugging
* purposes by setting PLOCK_DISABLE_EBO, in which case the function will be
* replaced with a simpler macro. This may for example be useful to more
* easily track callers' CPU usage. The macro was not designed to be used
* outside of the functions defined here.
*/
#if defined(PLOCK_DISABLE_EBO)
#define pl_wait_unlock_long(lock, mask) \
({ \
unsigned long _r; \
do { \
pl_cpu_relax(); \
_r = pl_deref_long(lock); \
} while (_r & mask); \
_r; /* return value */ \
})
#else /* not PLOCK_DISABLE_EBO */
__attribute__((unused,always_inline,no_instrument_function)) inline
static unsigned long __pl_wait_unlock_long(const unsigned long *lock, const unsigned long mask)
{
unsigned long ret;
unsigned int m = 0;
do {
unsigned int loops = m;
#ifdef _POSIX_PRIORITY_SCHEDULING
if (loops >= 65536) {
sched_yield();
loops -= 32768;
}
#endif
for (; loops >= 90; loops --)
pl_cpu_relax();
for (; loops >= 1; loops--)
pl_barrier();
ret = pl_load(lock);
if (__builtin_expect(ret & mask, 0) == 0)
break;
/* the below produces an exponential growth with loops to lower
* values and still growing. This allows competing threads to
* wait different times once the threshold is reached.
*/
m = ((m + (m >> 2)) + 1) & 0x1ffff;
} while (1);
return ret;
}
# if defined(PLOCK_INLINE_EBO)
__attribute__((unused,always_inline,no_instrument_function)) inline
# else
__attribute__((unused,noinline,no_instrument_function))
# endif
static unsigned long pl_wait_unlock_long(const unsigned long *lock, const unsigned long mask)
{
return __pl_wait_unlock_long(lock, mask);
}
#endif /* PLOCK_DISABLE_EBO */
/* This function waits for <lock> to release all bits covered by <mask>, and
* enforces an exponential backoff using CPU pauses to limit the pollution to
* the other threads' caches. The progression follows (2^N)-1, limited to 255
* iterations, which is way sufficient even for very large numbers of threads.
* The function slightly benefits from size optimization under gcc, but Clang
* cannot do it, so it's not done here, as it doesn't make a big difference.
* It is possible to disable exponential backoff (EBO) for debugging purposes
* by setting PLOCK_DISABLE_EBO, in which case the function will be replaced
* with a simpler macro. This may for example be useful to more easily track
* callers' CPU usage. The macro was not designed to be used outside of the
* functions defined here.
*/
#if defined(PLOCK_DISABLE_EBO)
#define pl_wait_unlock_int(lock, mask) \
({ \
unsigned int _r; \
do { \
pl_cpu_relax(); \
_r = pl_deref_int(lock); \
} while (_r & mask); \
_r; /* return value */ \
})
#else
__attribute__((unused,always_inline,no_instrument_function)) inline
static unsigned int __pl_wait_unlock_int(const unsigned int *lock, const unsigned int mask)
{
unsigned int ret;
unsigned int m = 0;
do {
unsigned int loops = m;
#ifdef _POSIX_PRIORITY_SCHEDULING
if (loops >= 65536) {
sched_yield();
loops -= 32768;
}
#endif
for (; loops >= 200; loops -= 10)
pl_cpu_relax();
for (; loops >= 1; loops--)
pl_barrier();
ret = pl_deref_int(lock);
if (__builtin_expect(ret & mask, 0) == 0)
break;
/* the below produces an exponential growth with loops to lower
* values and still growing. This allows competing threads to
* wait different times once the threshold is reached.
*/
m = ((m + (m >> 2)) + 1) & 0x1ffff;
} while (1);
return ret;
}
# if defined(PLOCK_INLINE_EBO)
__attribute__((unused,always_inline,no_instrument_function)) inline
# else
__attribute__((unused,noinline,no_instrument_function))
# endif
static unsigned int pl_wait_unlock_int(const unsigned int *lock, const unsigned int mask)
{
return __pl_wait_unlock_int(lock, mask);
}
#endif /* PLOCK_DISABLE_EBO */
/* This function waits for <lock> to change from value <prev> and returns the
* new value. It enforces an exponential backoff using CPU pauses to limit the
* pollution to the other threads' caches. The progression follows (2^N)-1,
* limited to 255 iterations, which is way sufficient even for very large
* numbers of threads. It is designed to be called after a first test which
* retrieves the previous value, so it starts by waiting. The function slightly
* benefits from size optimization under gcc, but Clang cannot do it, so it's
* not done here, as it doesn't make a big difference.
*/
__attribute__((unused,noinline,no_instrument_function))
static unsigned long pl_wait_new_long(const unsigned long *lock, const unsigned long prev)
{
unsigned char m = 0;
unsigned long curr;
do {
unsigned char loops = m + 1;
m = (m << 1) + 1;
do {
pl_cpu_relax();
} while (__builtin_expect(--loops, 0));
curr = pl_deref_long(lock);
} while (__builtin_expect(curr == prev, 0));
return curr;
}
/* This function waits for <lock> to change from value <prev> and returns the
* new value. It enforces an exponential backoff using CPU pauses to limit the
* pollution to the other threads' caches. The progression follows (2^N)-1,
* limited to 255 iterations, which is way sufficient even for very large
* numbers of threads. It is designed to be called after a first test which
* retrieves the previous value, so it starts by waiting. The function slightly
* benefits from size optimization under gcc, but Clang cannot do it, so it's
* not done here, as it doesn't make a big difference.
*/
__attribute__((unused,noinline,no_instrument_function))
static unsigned int pl_wait_new_int(const unsigned int *lock, const unsigned int prev)
{
unsigned char m = 0;
unsigned int curr;
do {
unsigned char loops = m + 1;
m = (m << 1) + 1;
do {
pl_cpu_relax();
} while (__builtin_expect(--loops, 0));
curr = pl_deref_int(lock);
} while (__builtin_expect(curr == prev, 0));
return curr;
}
/* request shared read access (R), return non-zero on success, otherwise 0 */
#define pl_try_r(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_WL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK64_RL_1) & PLOCK64_WL_ANY; \
if (__builtin_expect(__pl_r, 0)) \
pl_sub_noret((lock), PLOCK64_RL_1); \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_WL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK32_RL_1) & PLOCK32_WL_ANY; \
if (__builtin_expect(__pl_r, 0)) \
pl_sub_noret((lock), PLOCK32_RL_1); \
} \
!__pl_r; /* return value */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_r__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_r__(__FILE__,__LINE__); \
0; \
}) \
)
/* request shared read access (R) and wait for it. In order not to disturb a W
* lock waiting for all readers to leave, we first check if a W lock is held
* before trying to claim the R lock.
*/
#define pl_take_r(lock) \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_RL_1; \
register unsigned long __msk_r = PLOCK64_WL_ANY; \
register unsigned long __old_r = pl_cmpxchg(__lk_r, 0, __set_r); \
if (__old_r) { \
while (1) { \
if (__old_r & __msk_r) \
pl_wait_unlock_long(__lk_r, __msk_r); \
if (!(pl_ldadd_acq(__lk_r, __set_r) & __msk_r)) \
break; \
__old_r = pl_sub_lax(__lk_r, __set_r); \
} \
} \
pl_barrier(); \
0; \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_RL_1; \
register unsigned int __msk_r = PLOCK32_WL_ANY; \
register unsigned int __old_r = pl_cmpxchg(__lk_r, 0, __set_r); \
if (__old_r) { \
while (1) { \
if (__old_r & __msk_r) \
pl_wait_unlock_int(__lk_r, __msk_r); \
if (!(pl_ldadd_acq(__lk_r, __set_r) & __msk_r)) \
break; \
__old_r = pl_sub_lax(__lk_r, __set_r); \
} \
} \
pl_barrier(); \
0; \
}) : ({ \
void __unsupported_argument_size_for_pl_take_r__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_take_r__(__FILE__,__LINE__); \
0; \
})
/* release the read access (R) lock */
#define pl_drop_r(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_r__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_drop_r__(__FILE__,__LINE__); \
}) \
)
/* request a seek access (S), return non-zero on success, otherwise 0 */
#define pl_try_s(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long __pl_r = pl_deref_long(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK64_WL_ANY | PLOCK64_SL_ANY), 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK64_SL_1 | PLOCK64_RL_1) & \
(PLOCK64_WL_ANY | PLOCK64_SL_ANY); \
if (__builtin_expect(__pl_r, 0)) \
pl_sub_noret_lax((lock), PLOCK64_SL_1 | PLOCK64_RL_1); \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int __pl_r = pl_deref_int(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK32_WL_ANY | PLOCK32_SL_ANY), 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK32_SL_1 | PLOCK32_RL_1) & \
(PLOCK32_WL_ANY | PLOCK32_SL_ANY); \
if (__builtin_expect(__pl_r, 0)) \
pl_sub_noret_lax((lock), PLOCK32_SL_1 | PLOCK32_RL_1); \
} \
!__pl_r; /* return value */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_s__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_s__(__FILE__,__LINE__); \
0; \
}) \
)
/* request a seek access (S) and wait for it. The lock is immediately claimed,
* and only upon failure an exponential backoff is used. S locks rarely compete
* with W locks so S will generally not disturb W. As the S lock may be used as
* a spinlock, it's important to grab it as fast as possible.
*/
#define pl_take_s(lock) \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_SL_1 | PLOCK64_RL_1; \
register unsigned long __msk_r = PLOCK64_WL_ANY | PLOCK64_SL_ANY; \
while (1) { \
if (!__builtin_expect(pl_ldadd_acq(__lk_r, __set_r) & __msk_r, 0)) \
break; \
pl_sub_noret_lax(__lk_r, __set_r); \
pl_wait_unlock_long(__lk_r, __msk_r); \
} \
pl_barrier(); \
0; \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_SL_1 | PLOCK32_RL_1; \
register unsigned int __msk_r = PLOCK32_WL_ANY | PLOCK32_SL_ANY; \
while (1) { \
if (!__builtin_expect(pl_ldadd_acq(__lk_r, __set_r) & __msk_r, 0)) \
break; \
pl_sub_noret_lax(__lk_r, __set_r); \
pl_wait_unlock_int(__lk_r, __msk_r); \
} \
pl_barrier(); \
0; \
}) : ({ \
void __unsupported_argument_size_for_pl_take_s__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_take_s__(__FILE__,__LINE__); \
0; \
})
/* release the seek access (S) lock */
#define pl_drop_s(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK64_SL_1 + PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK32_SL_1 + PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_s__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_drop_s__(__FILE__,__LINE__); \
}) \
)
/* drop the S lock and go back to the R lock */
#define pl_stor(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret(lock, PLOCK64_SL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret(lock, PLOCK32_SL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_stor__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_stor__(__FILE__,__LINE__); \
}) \
)
/* take the W lock under the S lock */
#define pl_stow(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long __pl_r = pl_ldadd((lock), PLOCK64_WL_1); \
if (__pl_r & (PLOCK64_RL_ANY & ~PLOCK64_RL_1)) \
__pl_r = pl_wait_unlock_long((const unsigned long*)lock, (PLOCK64_RL_ANY & ~PLOCK64_RL_1)); \
pl_barrier(); \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int __pl_r = pl_ldadd((lock), PLOCK32_WL_1); \
if (__pl_r & (PLOCK32_RL_ANY & ~PLOCK32_RL_1)) \
__pl_r = pl_wait_unlock_int((const unsigned int*)lock, (PLOCK32_RL_ANY & ~PLOCK32_RL_1)); \
pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_stow__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_stow__(__FILE__,__LINE__); \
}) \
)
/* drop the W lock and go back to the S lock */
#define pl_wtos(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret(lock, PLOCK64_WL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret(lock, PLOCK32_WL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_wtos__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_wtos__(__FILE__,__LINE__); \
}) \
)
/* drop the W lock and go back to the R lock */
#define pl_wtor(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret(lock, PLOCK64_WL_1 | PLOCK64_SL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret(lock, PLOCK32_WL_1 | PLOCK32_SL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_wtor__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_wtor__(__FILE__,__LINE__); \
}) \
)
/* request a write access (W), return non-zero on success, otherwise 0.
*
* Below there is something important : by taking both W and S, we will cause
* an overflow of W at 4/5 of the maximum value that can be stored into W due
* to the fact that S is 2 bits, so we're effectively adding 5 to the word
* composed by W:S. But for all words multiple of 4 bits, the maximum value is
* multiple of 15 thus of 5. So the largest value we can store with all bits
* set to one will be met by adding 5, and then adding 5 again will place value
* 1 in W and value 0 in S, so we never leave W with 0. Also, even upon such an
* overflow, there's no risk to confuse it with an atomic lock because R is not
* null since it will not have overflown. For 32-bit locks, this situation
* happens when exactly 13108 threads try to grab the lock at once, W=1, S=0
* and R=13108. For 64-bit locks, it happens at 858993460 concurrent writers
* where W=1, S=0 and R=858993460.
*/
#define pl_try_w(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long __pl_r = pl_deref_long(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK64_WL_ANY | PLOCK64_SL_ANY), 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1);\
if (__builtin_expect(__pl_r & (PLOCK64_WL_ANY | PLOCK64_SL_ANY), 0)) { \
/* a writer, seeker or atomic is present, let's leave */ \
pl_sub_noret_lax((lock), PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1);\
__pl_r &= (PLOCK64_WL_ANY | PLOCK64_SL_ANY); /* return value */\
} else { \
/* wait for all other readers to leave */ \
while (__pl_r) \
__pl_r = pl_deref_long(lock) - \
(PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1); \
} \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int __pl_r = pl_deref_int(lock); \
pl_barrier(); \
if (!__builtin_expect(__pl_r & (PLOCK32_WL_ANY | PLOCK32_SL_ANY), 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1);\
if (__builtin_expect(__pl_r & (PLOCK32_WL_ANY | PLOCK32_SL_ANY), 0)) { \
/* a writer, seeker or atomic is present, let's leave */ \
pl_sub_noret_lax((lock), PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1);\
__pl_r &= (PLOCK32_WL_ANY | PLOCK32_SL_ANY); /* return value */\
} else { \
/* wait for all other readers to leave */ \
while (__pl_r) \
__pl_r = pl_deref_int(lock) - \
(PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1); \
} \
} \
!__pl_r; /* return value */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_w__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_w__(__FILE__,__LINE__); \
0; \
}) \
)
/* request a write access (W) and wait for it. The lock is immediately claimed,
* and only upon failure an exponential backoff is used.
*/
#define pl_take_w(lock) \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1; \
register unsigned long __msk_r = PLOCK64_WL_ANY | PLOCK64_SL_ANY; \
register unsigned long __pl_r; \
while (1) { \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
if (!__builtin_expect(__pl_r & __msk_r, 0)) \
break; \
if (!__builtin_expect(__pl_r & PLOCK64_WL_ANY, 0)) { \
/* S only: let it finish but impose ourselves */ \
pl_sub_noret_lax(__lk_r, PLOCK64_RL_1); \
__pl_r = pl_wait_unlock_long(__lk_r, PLOCK64_RL_ANY); \
__pl_r = pl_ldadd_acq(__lk_r, PLOCK64_RL_1); \
break; \
} \
pl_sub_noret_lax(__lk_r, __set_r); \
__pl_r = pl_wait_unlock_long(__lk_r, __msk_r); \
} \
/* wait for all other readers to leave */ \
if (__builtin_expect(__pl_r & PLOCK64_RL_ANY, 0)) \
__pl_r = pl_wait_unlock_long(__lk_r, (PLOCK64_RL_ANY & ~PLOCK64_RL_1)) - __set_r; \
pl_barrier(); \
0; \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1; \
register unsigned int __msk_r = PLOCK32_WL_ANY | PLOCK32_SL_ANY; \
register unsigned int __pl_r; \
while (1) { \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
if (!__builtin_expect(__pl_r & __msk_r, 0)) \
break; \
if (!__builtin_expect(__pl_r & PLOCK32_WL_ANY, 0)) { \
/* S only: let it finish but impose ourselves */ \
pl_sub_noret_lax(__lk_r, PLOCK32_RL_1); \
__pl_r = pl_wait_unlock_int(__lk_r, PLOCK32_RL_ANY); \
__pl_r = pl_ldadd_acq(__lk_r, PLOCK32_RL_1); \
break; \
} \
pl_sub_noret_lax(__lk_r, __set_r); \
__pl_r = pl_wait_unlock_int(__lk_r, __msk_r); \
} \
/* wait for all other readers to leave */ \
if (__builtin_expect(__pl_r & PLOCK32_RL_ANY, 0)) \
__pl_r = pl_wait_unlock_int(__lk_r, (PLOCK32_RL_ANY & ~PLOCK32_RL_1)) - __set_r; \
pl_barrier(); \
0; \
}) : ({ \
void __unsupported_argument_size_for_pl_take_w__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_take_w__(__FILE__,__LINE__); \
0; \
})
/* drop the write (W) lock entirely */
#define pl_drop_w(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK64_WL_1 | PLOCK64_SL_1 | PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK32_WL_1 | PLOCK32_SL_1 | PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_w__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_drop_w__(__FILE__,__LINE__); \
}) \
)
/* Try to upgrade from R to S, return non-zero on success, otherwise 0.
* This lock will fail if S or W are already held. In case of failure to grab
* the lock, it MUST NOT be retried without first dropping R, or it may never
* complete due to S waiting for R to leave before upgrading to W.
*/
#define pl_try_rtos(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long __pl_r; \
__pl_r = pl_ldadd_acq((lock), PLOCK64_SL_1) & (PLOCK64_WL_ANY | PLOCK64_SL_ANY);\
if (__builtin_expect(__pl_r, 0)) \
pl_sub_noret_lax((lock), PLOCK64_SL_1); \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int __pl_r; \
__pl_r = pl_ldadd_acq((lock), PLOCK32_SL_1) & (PLOCK32_WL_ANY | PLOCK32_SL_ANY);\
if (__builtin_expect(__pl_r, 0)) \
pl_sub_noret_lax((lock), PLOCK32_SL_1); \
!__pl_r; /* return value */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_rtos__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_rtos__(__FILE__,__LINE__); \
0; \
}) \
)
/* Try to upgrade from R to W, return non-zero on success, otherwise 0.
* This lock will fail if S or W are already held. In case of failure to grab
* the lock, it MUST NOT be retried without first dropping R, or it may never
* complete due to S waiting for R to leave before upgrading to W. It waits for
* the last readers to leave.
*/
#define pl_try_rtow(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_SL_1; \
register unsigned long __msk_r = PLOCK64_WL_ANY | PLOCK64_SL_ANY; \
register unsigned long __pl_r; \
pl_barrier(); \
while (1) { \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
if (__builtin_expect(__pl_r & __msk_r, 0)) { \
if (pl_ldadd_lax(__lk_r, - __set_r)) \
break; /* the caller needs to drop the lock now */ \
continue; /* lock was released, try again */ \
} \
/* ok we're the only writer, wait for readers to leave */ \
while (__builtin_expect(__pl_r, 0)) \
__pl_r = pl_deref_long(__lk_r) - (PLOCK64_WL_1|PLOCK64_SL_1|PLOCK64_RL_1); \
/* now return with __pl_r = 0 */ \
break; \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_SL_1; \
register unsigned int __msk_r = PLOCK32_WL_ANY | PLOCK32_SL_ANY; \
register unsigned int __pl_r; \
pl_barrier(); \
while (1) { \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
if (__builtin_expect(__pl_r & __msk_r, 0)) { \
if (pl_ldadd_lax(__lk_r, - __set_r)) \
break; /* the caller needs to drop the lock now */ \
continue; /* lock was released, try again */ \
} \
/* ok we're the only writer, wait for readers to leave */ \
while (__builtin_expect(__pl_r, 0)) \
__pl_r = pl_deref_int(__lk_r) - (PLOCK32_WL_1|PLOCK32_SL_1|PLOCK32_RL_1); \
/* now return with __pl_r = 0 */ \
break; \
} \
!__pl_r; /* return value */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_rtow__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_rtow__(__FILE__,__LINE__); \
0; \
}) \
)
/* request atomic write access (A), return non-zero on success, otherwise 0.
* It's a bit tricky as we only use the W bits for this and want to distinguish
* between other atomic users and regular lock users. We have to give up if an
* S lock appears. It's possible that such a lock stays hidden in the W bits
* after an overflow, but in this case R is still held, ensuring we stay in the
* loop until we discover the conflict. The lock only return successfully if all
* readers are gone (or converted to A).
*/
#define pl_try_a(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK64_WL_1); \
while (1) { \
if (__builtin_expect(__pl_r & PLOCK64_SL_ANY, 0)) { \
pl_sub_noret_lax((lock), PLOCK64_WL_1); \
break; /* return !__pl_r */ \
} \
__pl_r &= PLOCK64_RL_ANY; \
if (!__builtin_expect(__pl_r, 0)) \
break; /* return !__pl_r */ \
__pl_r = pl_deref_long(lock); \
} \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK32_WL_1); \
while (1) { \
if (__builtin_expect(__pl_r & PLOCK32_SL_ANY, 0)) { \
pl_sub_noret_lax((lock), PLOCK32_WL_1); \
break; /* return !__pl_r */ \
} \
__pl_r &= PLOCK32_RL_ANY; \
if (!__builtin_expect(__pl_r, 0)) \
break; /* return !__pl_r */ \
__pl_r = pl_deref_int(lock); \
} \
} \
!__pl_r; /* return value */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_a__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_a__(__FILE__,__LINE__); \
0; \
}) \
)
/* request atomic write access (A) and wait for it. See comments in pl_try_a() for
* explanations.
*/
#define pl_take_a(lock) \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_WL_1; \
register unsigned long __msk_r = PLOCK64_SL_ANY; \
register unsigned long __pl_r; \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
while (__builtin_expect(__pl_r & PLOCK64_RL_ANY, 0)) { \
if (__builtin_expect(__pl_r & __msk_r, 0)) { \
pl_sub_noret_lax(__lk_r, __set_r); \
pl_wait_unlock_long(__lk_r, __msk_r); \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
continue; \
} \
/* wait for all readers to leave or upgrade */ \
pl_cpu_relax(); pl_cpu_relax(); pl_cpu_relax(); \
__pl_r = pl_deref_long(lock); \
} \
pl_barrier(); \
0; \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_WL_1; \
register unsigned int __msk_r = PLOCK32_SL_ANY; \
register unsigned int __pl_r; \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
while (__builtin_expect(__pl_r & PLOCK32_RL_ANY, 0)) { \
if (__builtin_expect(__pl_r & __msk_r, 0)) { \
pl_sub_noret_lax(__lk_r, __set_r); \
pl_wait_unlock_int(__lk_r, __msk_r); \
__pl_r = pl_ldadd_acq(__lk_r, __set_r); \
continue; \
} \
/* wait for all readers to leave or upgrade */ \
pl_cpu_relax(); pl_cpu_relax(); pl_cpu_relax(); \
__pl_r = pl_deref_int(lock); \
} \
pl_barrier(); \
0; \
}) : ({ \
void __unsupported_argument_size_for_pl_take_a__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_take_a__(__FILE__,__LINE__); \
0; \
})
/* release atomic write access (A) lock */
#define pl_drop_a(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK64_WL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK32_WL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_a__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_drop_a__(__FILE__,__LINE__); \
}) \
)
/* Downgrade A to R. Inc(R), dec(W) then wait for W==0 */
#define pl_ator(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_RL_1 - PLOCK64_WL_1; \
register unsigned long __msk_r = PLOCK64_WL_ANY; \
register unsigned long __pl_r = pl_ldadd(__lk_r, __set_r) + __set_r; \
while (__builtin_expect(__pl_r & __msk_r, 0)) { \
__pl_r = pl_wait_unlock_long(__lk_r, __msk_r); \
} \
pl_barrier(); \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_RL_1 - PLOCK32_WL_1; \
register unsigned int __msk_r = PLOCK32_WL_ANY; \
register unsigned int __pl_r = pl_ldadd(__lk_r, __set_r) + __set_r; \
while (__builtin_expect(__pl_r & __msk_r, 0)) { \
__pl_r = pl_wait_unlock_int(__lk_r, __msk_r); \
} \
pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_ator__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_ator__(__FILE__,__LINE__); \
}) \
)
/* Try to upgrade from R to A, return non-zero on success, otherwise 0.
* This lock will fail if S is held or appears while waiting (typically due to
* a previous grab that was disguised as a W due to an overflow). In case of
* failure to grab the lock, it MUST NOT be retried without first dropping R,
* or it may never complete due to S waiting for R to leave before upgrading
* to W. The lock succeeds once there's no more R (ie all of them have either
* completed or were turned to A).
*/
#define pl_try_rtoa(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long __pl_r = pl_deref_long(lock) & PLOCK64_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK64_WL_1 - PLOCK64_RL_1); \
while (1) { \
if (__builtin_expect(__pl_r & PLOCK64_SL_ANY, 0)) { \
pl_sub_noret_lax((lock), PLOCK64_WL_1 - PLOCK64_RL_1); \
break; /* return !__pl_r */ \
} \
__pl_r &= PLOCK64_RL_ANY; \
if (!__builtin_expect(__pl_r, 0)) \
break; /* return !__pl_r */ \
__pl_r = pl_deref_long(lock); \
} \
} \
!__pl_r; /* return value */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int __pl_r = pl_deref_int(lock) & PLOCK32_SL_ANY; \
pl_barrier(); \
if (!__builtin_expect(__pl_r, 0)) { \
__pl_r = pl_ldadd_acq((lock), PLOCK32_WL_1 - PLOCK32_RL_1); \
while (1) { \
if (__builtin_expect(__pl_r & PLOCK32_SL_ANY, 0)) { \
pl_sub_noret_lax((lock), PLOCK32_WL_1 - PLOCK32_RL_1); \
break; /* return !__pl_r */ \
} \
__pl_r &= PLOCK32_RL_ANY; \
if (!__builtin_expect(__pl_r, 0)) \
break; /* return !__pl_r */ \
__pl_r = pl_deref_int(lock); \
} \
} \
!__pl_r; /* return value */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_rtoa__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_rtoa__(__FILE__,__LINE__); \
0; \
}) \
)
/*
* The following operations cover the multiple writers model : U->R->J->C->A
*/
/* Upgrade R to J. Inc(W) then wait for R==W or S != 0 */
#define pl_rtoj(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __pl_r = pl_ldadd_acq(__lk_r, PLOCK64_WL_1) + PLOCK64_WL_1;\
register unsigned char __m = 0; \
while (!(__pl_r & PLOCK64_SL_ANY) && \
(__pl_r / PLOCK64_WL_1 != (__pl_r & PLOCK64_RL_ANY) / PLOCK64_RL_1)) { \
unsigned char __loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_long(__lk_r); \
} \
pl_barrier(); \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __pl_r = pl_ldadd_acq(__lk_r, PLOCK32_WL_1) + PLOCK32_WL_1;\
register unsigned char __m = 0; \
while (!(__pl_r & PLOCK32_SL_ANY) && \
(__pl_r / PLOCK32_WL_1 != (__pl_r & PLOCK32_RL_ANY) / PLOCK32_RL_1)) { \
unsigned char __loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_int(__lk_r); \
} \
pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_rtoj__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_rtoj__(__FILE__,__LINE__); \
}) \
)
/* Upgrade J to C. Set S. Only one thread needs to do it though it's idempotent */
#define pl_jtoc(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __pl_r = pl_deref_long(__lk_r); \
if (!(__pl_r & PLOCK64_SL_ANY)) \
pl_or_noret(__lk_r, PLOCK64_SL_1); \
pl_barrier(); \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __pl_r = pl_deref_int(__lk_r); \
if (!(__pl_r & PLOCK32_SL_ANY)) \
pl_or_noret(__lk_r, PLOCK32_SL_1); \
pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_jtoc__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_jtoc__(__FILE__,__LINE__); \
}) \
)
/* Upgrade R to C. Inc(W) then wait for R==W or S != 0 */
#define pl_rtoc(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __pl_r = pl_ldadd_acq(__lk_r, PLOCK64_WL_1) + PLOCK64_WL_1;\
register unsigned char __m = 0; \
while (__builtin_expect(!(__pl_r & PLOCK64_SL_ANY), 0)) { \
unsigned char __loops; \
if (__pl_r / PLOCK64_WL_1 == (__pl_r & PLOCK64_RL_ANY) / PLOCK64_RL_1) { \
pl_or_noret(__lk_r, PLOCK64_SL_1); \
break; \
} \
__loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_long(__lk_r); \
} \
pl_barrier(); \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __pl_r = pl_ldadd_acq(__lk_r, PLOCK32_WL_1) + PLOCK32_WL_1;\
register unsigned char __m = 0; \
while (__builtin_expect(!(__pl_r & PLOCK32_SL_ANY), 0)) { \
unsigned char __loops; \
if (__pl_r / PLOCK32_WL_1 == (__pl_r & PLOCK32_RL_ANY) / PLOCK32_RL_1) { \
pl_or_noret(__lk_r, PLOCK32_SL_1); \
break; \
} \
__loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_int(__lk_r); \
} \
pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_rtoj__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_rtoj__(__FILE__,__LINE__); \
}) \
)
/* Drop the claim (C) lock : R--,W-- then clear S if !R */
#define pl_drop_c(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = - PLOCK64_RL_1 - PLOCK64_WL_1; \
register unsigned long __pl_r = pl_ldadd(__lk_r, __set_r) + __set_r; \
if (!(__pl_r & PLOCK64_RL_ANY)) \
pl_and_noret(__lk_r, ~PLOCK64_SL_1); \
pl_barrier(); \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = - PLOCK32_RL_1 - PLOCK32_WL_1; \
register unsigned int __pl_r = pl_ldadd(__lk_r, __set_r) + __set_r; \
if (!(__pl_r & PLOCK32_RL_ANY)) \
pl_and_noret(__lk_r, ~PLOCK32_SL_1); \
pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_c__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_drop_c__(__FILE__,__LINE__); \
}) \
)
/* Upgrade C to A. R-- then wait for !S or clear S if !R */
#define pl_ctoa(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __pl_r = pl_ldadd(__lk_r, -PLOCK64_RL_1) - PLOCK64_RL_1;\
while (__pl_r & PLOCK64_SL_ANY) { \
if (!(__pl_r & PLOCK64_RL_ANY)) { \
pl_and_noret(__lk_r, ~PLOCK64_SL_1); \
break; \
} \
pl_cpu_relax(); \
pl_cpu_relax(); \
__pl_r = pl_deref_long(__lk_r); \
} \
pl_barrier(); \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __pl_r = pl_ldadd(__lk_r, -PLOCK32_RL_1) - PLOCK32_RL_1; \
while (__pl_r & PLOCK32_SL_ANY) { \
if (!(__pl_r & PLOCK32_RL_ANY)) { \
pl_and_noret(__lk_r, ~PLOCK32_SL_1); \
break; \
} \
pl_cpu_relax(); \
pl_cpu_relax(); \
__pl_r = pl_deref_int(__lk_r); \
} \
pl_barrier(); \
}) : ({ \
void __unsupported_argument_size_for_pl_ctoa__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_ctoa__(__FILE__,__LINE__); \
}) \
)
/* downgrade the atomic write access lock (A) to join (J) */
#define pl_atoj(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_add_noret(lock, PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_add_noret(lock, PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_atoj__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_atoj__(__FILE__,__LINE__); \
}) \
)
/* Returns non-zero if the thread calling it is the last writer, otherwise zero. It is
* designed to be called before pl_drop_j(), pl_drop_c() or pl_drop_a() for operations
* which need to be called only once.
*/
#define pl_last_writer(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
!(pl_deref_long(lock) & PLOCK64_WL_2PL); \
}) : (sizeof(*(lock)) == 4) ? ({ \
!(pl_deref_int(lock) & PLOCK32_WL_2PL); \
}) : ({ \
void __unsupported_argument_size_for_pl_last_j__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_last_j__(__FILE__,__LINE__); \
0; \
}) \
)
/* attempt to get an exclusive write access via the J lock and wait for it.
* Only one thread may succeed in this operation. It will not conflict with
* other users and will first wait for all writers to leave, then for all
* readers to leave before starting. This offers a solution to obtain an
* exclusive access to a shared resource in the R/J/C/A model. A concurrent
* take_a() will wait for this one to finish first. Using a CAS instead of XADD
* should make the operation converge slightly faster. Returns non-zero on
* success otherwise 0.
*/
#define pl_try_j(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_RL_1; \
register unsigned long __msk_r = PLOCK64_WL_ANY; \
register unsigned long __pl_r; \
register unsigned char __m; \
pl_wait_unlock_long(__lk_r, __msk_r); \
__pl_r = pl_ldadd_acq(__lk_r, __set_r) + __set_r; \
/* wait for all other readers to leave */ \
__m = 0; \
while (__builtin_expect(__pl_r & PLOCK64_RL_2PL, 0)) { \
unsigned char __loops; \
/* give up on other writers */ \
if (__builtin_expect(__pl_r & PLOCK64_WL_2PL, 0)) { \
pl_sub_noret_lax(__lk_r, __set_r); \
__pl_r = 0; /* failed to get the lock */ \
break; \
} \
__loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_long(__lk_r); \
} \
pl_barrier(); \
__pl_r; /* return value, cannot be null on success */ \
}) : (sizeof(*(lock)) == 4) ? ({ \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_RL_1; \
register unsigned int __msk_r = PLOCK32_WL_ANY; \
register unsigned int __pl_r; \
register unsigned char __m; \
pl_wait_unlock_int(__lk_r, __msk_r); \
__pl_r = pl_ldadd_acq(__lk_r, __set_r) + __set_r; \
/* wait for all other readers to leave */ \
__m = 0; \
while (__builtin_expect(__pl_r & PLOCK32_RL_2PL, 0)) { \
unsigned char __loops; \
/* but rollback on other writers */ \
if (__builtin_expect(__pl_r & PLOCK32_WL_2PL, 0)) { \
pl_sub_noret_lax(__lk_r, __set_r); \
__pl_r = 0; /* failed to get the lock */ \
break; \
} \
__loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_int(__lk_r); \
} \
pl_barrier(); \
__pl_r; /* return value, cannot be null on success */ \
}) : ({ \
void __unsupported_argument_size_for_pl_try_j__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_try_j__(__FILE__,__LINE__); \
0; \
}) \
)
/* request an exclusive write access via the J lock and wait for it. Only one
* thread may succeed in this operation. It will not conflict with other users
* and will first wait for all writers to leave, then for all readers to leave
* before starting. This offers a solution to obtain an exclusive access to a
* shared resource in the R/J/C/A model. A concurrent take_a() will wait for
* this one to finish first. Using a CAS instead of XADD should make the
* operation converge slightly faster.
*/
#define pl_take_j(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
__label__ __retry; \
register unsigned long *__lk_r = (unsigned long *)(lock); \
register unsigned long __set_r = PLOCK64_WL_1 | PLOCK64_RL_1; \
register unsigned long __msk_r = PLOCK64_WL_ANY; \
register unsigned long __pl_r; \
register unsigned char __m; \
__retry: \
pl_wait_unlock_long(__lk_r, __msk_r); \
__pl_r = pl_ldadd_acq(__lk_r, __set_r) + __set_r; \
/* wait for all other readers to leave */ \
__m = 0; \
while (__builtin_expect(__pl_r & PLOCK64_RL_2PL, 0)) { \
unsigned char __loops; \
/* but rollback on other writers */ \
if (__builtin_expect(__pl_r & PLOCK64_WL_2PL, 0)) { \
pl_sub_noret_lax(__lk_r, __set_r); \
goto __retry; \
} \
__loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_long(__lk_r); \
} \
pl_barrier(); \
0; \
}) : (sizeof(*(lock)) == 4) ? ({ \
__label__ __retry; \
register unsigned int *__lk_r = (unsigned int *)(lock); \
register unsigned int __set_r = PLOCK32_WL_1 | PLOCK32_RL_1; \
register unsigned int __msk_r = PLOCK32_WL_ANY; \
register unsigned int __pl_r; \
register unsigned char __m; \
__retry: \
pl_wait_unlock_int(__lk_r, __msk_r); \
__pl_r = pl_ldadd_acq(__lk_r, __set_r) + __set_r; \
/* wait for all other readers to leave */ \
__m = 0; \
while (__builtin_expect(__pl_r & PLOCK32_RL_2PL, 0)) { \
unsigned char __loops; \
/* but rollback on other writers */ \
if (__builtin_expect(__pl_r & PLOCK32_WL_2PL, 0)) { \
pl_sub_noret_lax(__lk_r, __set_r); \
goto __retry; \
} \
__loops = __m + 1; \
__m = (__m << 1) + 1; \
do { \
pl_cpu_relax(); \
pl_cpu_relax(); \
} while (--__loops); \
__pl_r = pl_deref_int(__lk_r); \
} \
pl_barrier(); \
0; \
}) : ({ \
void __unsupported_argument_size_for_pl_take_j__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_take_j__(__FILE__,__LINE__); \
0; \
}) \
)
/* drop the join (J) lock entirely */
#define pl_drop_j(lock) ( \
(sizeof(long) == 8 && sizeof(*(lock)) == 8) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK64_WL_1 | PLOCK64_RL_1); \
}) : (sizeof(*(lock)) == 4) ? ({ \
pl_barrier(); \
pl_sub_noret_rel(lock, PLOCK32_WL_1 | PLOCK32_RL_1); \
}) : ({ \
void __unsupported_argument_size_for_pl_drop_j__(char *,int); \
if (sizeof(*(lock)) != 4 && (sizeof(long) != 8 || sizeof(*(lock)) != 8)) \
__unsupported_argument_size_for_pl_drop_j__(__FILE__,__LINE__); \
}) \
)
/*
* The part below is for Low Overhead R/W locks (LORW). These ones are not
* upgradable and not necessarily fair but they try to be fast when uncontended
* and to limit the cost and perturbation during contention. Writers always
* have precedence over readers to preserve latency as much as possible.
*
* The principle is to offer a fast no-contention path and a limited total
* number of writes for the contended path. Since R/W locks are expected to be
* used in situations where there is a benefit in separating reads from writes,
* it is expected that reads are common (typ >= 50%) and that there is often at
* least one reader (otherwise a spinlock wouldn't be a problem). As such, a
* reader will try to pass instantly, detect contention and immediately retract
* and wait in the queue in case there is contention. A writer will first also
* try to pass instantly, and if it fails due to pending readers, it will mark
* that it's waiting so that readers stop entering. This will leave the writer
* waiting as close as possible to the point of being granted access. New
* writers will also notice this previous contention and will wait outside.
* This means that a successful access for a reader or a writer requires a
* single CAS, and a contended attempt will require one failed CAS and one
* successful XADD for a reader, or an optional OR and a N+1 CAS for the
* writer.
*
* A counter of shared users indicates the number of active readers, while a
* (single-bit) counter of exclusive writers indicates whether the lock is
* currently held for writes. This distinction also permits to use a single
* function to release the lock if desired, since the exclusive bit indicates
* the state of the caller of unlock(). The WRQ bit is cleared during the
* unlock.
*
* Layout: (32/64 bit):
* 31 2 1 0
* +-----------+--------------+-----+-----+
* | | SHR | WRQ | EXC |
* +-----------+--------------+-----+-----+
*
* In order to minimize operations, the WRQ bit is held during EXC so that the
* write waiter that had to fight for EXC doesn't have to release WRQ during
* its operations, and will just drop it along with EXC upon unlock.
*
* This means the following costs:
* reader:
* success: 1 CAS
* failure: 1 CAS + 1 XADD
* unlock: 1 SUB
* writer:
* success: 1 RD + 1 CAS
* failure: 1 RD + 1 CAS + 0/1 OR + N CAS
* unlock: 1 AND
*/
#define PLOCK_LORW_EXC_BIT ((sizeof(long) == 8) ? 0 : 0)
#define PLOCK_LORW_EXC_SIZE ((sizeof(long) == 8) ? 1 : 1)
#define PLOCK_LORW_EXC_BASE (1UL << PLOCK_LORW_EXC_BIT)
#define PLOCK_LORW_EXC_MASK (((1UL << PLOCK_LORW_EXC_SIZE) - 1UL) << PLOCK_LORW_EXC_BIT)
#define PLOCK_LORW_WRQ_BIT ((sizeof(long) == 8) ? 1 : 1)
#define PLOCK_LORW_WRQ_SIZE ((sizeof(long) == 8) ? 1 : 1)
#define PLOCK_LORW_WRQ_BASE (1UL << PLOCK_LORW_WRQ_BIT)
#define PLOCK_LORW_WRQ_MASK (((1UL << PLOCK_LORW_WRQ_SIZE) - 1UL) << PLOCK_LORW_WRQ_BIT)
#define PLOCK_LORW_SHR_BIT ((sizeof(long) == 8) ? 2 : 2)
#define PLOCK_LORW_SHR_SIZE ((sizeof(long) == 8) ? 30 : 30)
#define PLOCK_LORW_SHR_BASE (1UL << PLOCK_LORW_SHR_BIT)
#define PLOCK_LORW_SHR_MASK (((1UL << PLOCK_LORW_SHR_SIZE) - 1UL) << PLOCK_LORW_SHR_BIT)
__attribute__((unused,always_inline,no_instrument_function))
static inline void pl_lorw_rdlock(unsigned long *lock)
{
unsigned long lk = 0;
/* First, assume we're alone and try to get the read lock (fast path).
* It often works because read locks are often used on low-contention
* structs.
*/
lk = pl_cmpxchg(lock, 0, PLOCK_LORW_SHR_BASE);
if (!lk)
return;
/* so we were not alone, make sure there's no writer waiting for the
* lock to be empty of visitors.
*/
if (lk & PLOCK_LORW_WRQ_MASK)
#if defined(PLOCK_LORW_INLINE_WAIT) && !defined(PLOCK_DISABLE_EBO)
lk = __pl_wait_unlock_long(lock, PLOCK_LORW_WRQ_MASK);
#else
lk = pl_wait_unlock_long(lock, PLOCK_LORW_WRQ_MASK);
#endif
/* count us as visitor among others */
lk = pl_ldadd_acq(lock, PLOCK_LORW_SHR_BASE);
/* wait for end of exclusive access if any */
if (lk & PLOCK_LORW_EXC_MASK)
#if defined(PLOCK_LORW_INLINE_WAIT) && !defined(PLOCK_DISABLE_EBO)
lk = __pl_wait_unlock_long(lock, PLOCK_LORW_EXC_MASK);
#else
lk = pl_wait_unlock_long(lock, PLOCK_LORW_EXC_MASK);
#endif
}
__attribute__((unused,always_inline,no_instrument_function))
static inline void pl_lorw_wrlock(unsigned long *lock)
{
unsigned long lk = 0;
unsigned long old = 0;
/* first, make sure another writer is not already blocked waiting for
* readers to leave. Note that tests have shown that it can be even
* faster to avoid the first check and to unconditionally wait.
*/
lk = pl_deref_long(lock);
if (__builtin_expect(lk & PLOCK_LORW_WRQ_MASK, 1))
#if defined(PLOCK_LORW_INLINE_WAIT) && !defined(PLOCK_DISABLE_EBO)
lk = __pl_wait_unlock_long(lock, PLOCK_LORW_WRQ_MASK);
#else
lk = pl_wait_unlock_long(lock, PLOCK_LORW_WRQ_MASK);
#endif
do {
/* let's check for the two sources of contention at once */
if (__builtin_expect(lk & (PLOCK_LORW_SHR_MASK | PLOCK_LORW_EXC_MASK), 1)) {
/* check if there are still readers coming. If so, close the door and
* wait for them to leave.
*/
if (lk & PLOCK_LORW_SHR_MASK) {
/* note below, an OR is significantly cheaper than BTS or XADD */
if (!(lk & PLOCK_LORW_WRQ_MASK))
pl_or_noret(lock, PLOCK_LORW_WRQ_BASE);
#if defined(PLOCK_LORW_INLINE_WAIT) && !defined(PLOCK_DISABLE_EBO)
lk = __pl_wait_unlock_long(lock, PLOCK_LORW_SHR_MASK);
#else
lk = pl_wait_unlock_long(lock, PLOCK_LORW_SHR_MASK);
#endif
}
/* And also wait for a previous writer to finish. */
if (lk & PLOCK_LORW_EXC_MASK)
#if defined(PLOCK_LORW_INLINE_WAIT) && !defined(PLOCK_DISABLE_EBO)
lk = __pl_wait_unlock_long(lock, PLOCK_LORW_EXC_MASK);
#else
lk = pl_wait_unlock_long(lock, PLOCK_LORW_EXC_MASK);
#endif
}
/* A fresh new reader may appear right now if there were none
* above and we didn't close the door.
*/
old = lk & ~PLOCK_LORW_SHR_MASK & ~PLOCK_LORW_EXC_MASK;
lk = pl_cmpxchg(lock, old, old | PLOCK_LORW_EXC_BASE);
} while (lk != old);
/* done, not waiting anymore, the WRQ bit if any, will be dropped by the
* unlock
*/
}
__attribute__((unused,always_inline,no_instrument_function))
static inline void pl_lorw_rdunlock(unsigned long *lock)
{
pl_sub_noret_rel(lock, PLOCK_LORW_SHR_BASE);
}
__attribute__((unused,always_inline,no_instrument_function))
static inline void pl_lorw_wrunlock(unsigned long *lock)
{
pl_and_noret_rel(lock, ~(PLOCK_LORW_WRQ_MASK | PLOCK_LORW_EXC_MASK));
}
__attribute__((unused,always_inline,no_instrument_function))
static inline void pl_lorw_unlock(unsigned long *lock)
{
if (pl_deref_long(lock) & PLOCK_LORW_EXC_MASK)
pl_lorw_wrunlock(lock);
else
pl_lorw_rdunlock(lock);
}
#endif /* PL_PLOCK_H */
|