1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
|
/*
* Compact Elastic Binary Trees - internal functions and types
*
* Copyright (C) 2014-2025 Willy Tarreau - w@1wt.eu
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/* This file MUST NOT be included by public code, it contains macros, enums
* with short names and function definitions that may clash with user code.
* It may only be included by the respective types' C files.
*/
/*
* These trees are optimized for adding the minimalest overhead to the stored
* data. This version uses the node's pointer as the key, for the purpose of
* quickly finding its neighbours.
*
* A few properties :
* - the xor between two branches of a node cannot be zero unless the two
* branches are duplicate keys
* - the xor between two nodes has *at least* the split bit set, possibly more
* - the split bit is always strictly smaller for a node than for its parent,
* which implies that the xor between the keys of the lowest level node is
* always smaller than the xor between a higher level node. Hence the xor
* between the branches of a regular leaf is always strictly larger than the
* xor of its parent node's branches if this node is different, since the
* leaf is associated with a higher level node which has at least one higher
* level branch. The first leaf doesn't validate this but is handled by the
* rules below.
* - during the descent, the node corresponding to a leaf is always visited
* before the leaf, unless it's the first inserted, nodeless leaf.
* - the first key is the only one without any node, and it has both its
* branches pointing to itself during insertion to detect it (i.e. xor==0).
* - a leaf is always present as a node on the path from the root, except for
* the inserted first key which has no node, and is recognizable by its two
* branches pointing to itself.
* - a consequence of the rules above is that a non-first leaf appearing below
* a node will necessarily have an associated node with a split bit equal to
* or greater than the node's split bit.
* - another consequence is that below a node, the split bits are different for
* each branches since both of them are already present above the node, thus
* at different levels, so their respective XOR values will be different.
* - since all nodes in a given path have a different split bit, if a leaf has
* the same split bit as its parent node, it is necessary its associated leaf
*
* When descending along the tree, it is possible to know that a search key is
* not present, because its XOR with both of the branches is stricly higher
* than the inter-branch XOR. The reason is simple : the inter-branch XOR will
* have its highest bit set indicating the split bit. Since it's the bit that
* differs between the two branches, the key cannot have it both set and
* cleared when comparing to the branch values. So xoring the key with both
* branches will emit a higher bit only when the key's bit differs from both
* branches' similar bit. Thus, the following equation :
* (XOR(key, L) > XOR(L, R)) && (XOR(key, R) > XOR(L, R))
* is only true when the key should be placed above that node. Since the key
* has a higher bit which differs from the node, either it has it set and the
* node has it clear (same for both branches), or it has it clear and the node
* has it set for both branches. For this reason it's enough to compare the key
* with any node when the equation above is true, to know if it ought to be
* present on the left or on the right side. This is useful for insertion and
* for range lookups.
*/
#ifndef _CEBTREE_PRV_H
#define _CEBTREE_PRV_H
#include <sys/types.h>
#include <inttypes.h>
#include <stddef.h>
#include <string.h>
#include "cebtree.h"
/* A few utility functions and macros that we need below */
/* This is used to test if a macro is defined and equals 1. The principle is
* that the macro is passed as a value and its value concatenated to the word
* "comma_for_one" to form a new macro name. The macro "comma_for_one1" equals
* one comma, which, once used in an argument, will shift all of them by one,
* so that we can use this to concatenate both a 1 and a 0 and always pick the
* second one.
*/
#define comma_for_one1 ,
#define _____equals_1(x, y, ...) (y)
#define ____equals_1(x, ...) _____equals_1(x, 0)
#define ___equals_1(x) ____equals_1(comma_for_one ## x 1)
#define __equals_1(x) ___equals_1(x)
/* gcc 5 and clang 3 brought __has_attribute(), which is not well documented in
* the case of gcc, but is convenient since handled at the preprocessor level.
* In both cases it's possible to test for __has_attribute() using ifdef. When
* not defined we remap this to the __has_attribute_<name> macro so that we'll
* later be able to implement on a per-compiler basis those which are missing,
* by defining __has_attribute_<name> to 1.
*/
#ifndef __has_attribute
#define __has_attribute(x) __equals_1(__has_attribute_ ## x)
#endif
/* gcc 10 and clang 3 brought __has_builtin() to test if a builtin exists.
* Just like above, if it doesn't exist, we remap it to a macro allowing us
* to define these ourselves by defining __has_builtin_<name> to 1.
*/
#ifndef __has_builtin
#define __has_builtin(x) __equals_1(__has_builtin_ ## x)
#endif
#if !defined(__GNUC__)
/* Some versions of glibc irresponsibly redefine __attribute__() to empty for
* non-gcc compilers, and as such, silently break all constructors with other
* other compilers. Let's make sure such incompatibilities are detected if any,
* or that the attribute is properly enforced.
*/
#undef __attribute__
#define __attribute__(x) __attribute__(x)
#endif
/* Define the missing __builtin_prefetch() for tcc. */
#if defined(__TINYC__) && !defined(__builtin_prefetch)
#define __builtin_prefetch(addr, ...) do { } while (0)
#endif
/* __builtin_unreachable() was added in gcc 4.5 */
#if defined(__GNUC__) && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
#define __has_builtin___builtin_unreachable 1 /* make __builtin_unreachable() return 1 */
#elif !__has_builtin(__builtin_unreachable)
#define __builtin_unreachable() do { } while (1)
#endif
/* FLSNZ: find last set bit for non-zero value. "Last" here means the highest
* one. It returns a value from 1 to 32 for 1<<0 to 1<<31.
*/
#if defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 2)))
/* gcc >= 4.2 brings __builtin_clz() and __builtin_clzl(), also usable for
* non-x86. However on x86 gcc does bad stuff if not properly handled. It xors
* the bsr return with 31 and since it doesn't know how to deal with a xor
* followed by a negation, it adds two instructions when using 32-clz(). Thus
* instead we first cancel the xor using another one then add one. Even on ARM
* that provides a clz instruction, it saves one register to proceed like this.
*/
#define flsnz8(x) flsnz32((unsigned char)x)
static inline __attribute__((always_inline)) unsigned int flsnz32(unsigned int x)
{
return (__builtin_clz(x) ^ 31) + 1;
}
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
{
return (__builtin_clzll(x) ^ 63) + 1;
}
#elif (defined(__i386__) || defined(__x86_64__)) && !defined(__atom__) /* Not gcc >= 4.2 */
/* DO NOT USE ON ATOM! The instruction is emulated and is several times slower
* than doing the math by hand.
*/
#define flsnz8(x) flsnz32((unsigned char)x)
static inline __attribute__((always_inline)) unsigned int flsnz32(unsigned int x)
{
unsigned int r;
__asm__("bsrl %1,%0\n"
: "=r" (r) : "rm" (x));
return r + 1;
}
#if defined(__x86_64__)
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
{
unsigned long long r;
__asm__("bsrq %1,%0\n"
: "=r" (r) : "rm" (x));
return r + 1;
}
#else
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
{
unsigned int h;
unsigned int bits = 32;
h = x >> 32;
if (!h) {
h = x;
bits = 0;
}
return flsnz32(h) + bits;
}
#endif
#else /* Neither gcc >= 4.2 nor x86, use generic code */
static inline __attribute__((always_inline)) unsigned int flsnz8(unsigned int x)
{
unsigned int ret = 0;
if (x >> 4) { x >>= 4; ret += 4; }
return ret + ((0xFFFFAA50U >> (x << 1)) & 3) + 1;
}
#define flsnz32(___a) ({ \
register unsigned int ___x, ___bits = 0; \
___x = (___a); \
if (___x & 0xffff0000) { ___x &= 0xffff0000; ___bits += 16;} \
if (___x & 0xff00ff00) { ___x &= 0xff00ff00; ___bits += 8;} \
if (___x & 0xf0f0f0f0) { ___x &= 0xf0f0f0f0; ___bits += 4;} \
if (___x & 0xcccccccc) { ___x &= 0xcccccccc; ___bits += 2;} \
if (___x & 0xaaaaaaaa) { ___x &= 0xaaaaaaaa; ___bits += 1;} \
___bits + 1; \
})
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
{
unsigned int h;
unsigned int bits = 32;
h = x >> 32;
if (!h) {
h = x;
bits = 0;
}
return flsnz32(h) + bits;
}
#endif
#define flsnz_long(x) ((sizeof(long) > 4) ? flsnz64(x) : flsnz32(x))
#define flsnz(x) ((sizeof(x) > 4) ? flsnz64(x) : (sizeof(x) > 1) ? flsnz32(x) : flsnz8(x))
/* Compare blocks <a> and <b> byte-to-byte, from bit <ignore> to bit <len-1>.
* Return the number of equal bits between strings, assuming that the first
* <ignore> bits are already identical. It is possible to return slightly more
* than <len> bits if <len> does not stop on a byte boundary and we find exact
* bytes. Note that parts or all of <ignore> bits may be rechecked. It is only
* passed here as a hint to speed up the check.
*/
static
#if defined(__OPTIMIZE_SIZE__)
__attribute__((noinline))
#else
inline __attribute__((always_inline))
#endif
size_t equal_bits(const unsigned char *a,
const unsigned char *b,
size_t ignore, size_t len)
{
for (ignore >>= 3, a += ignore, b += ignore, ignore <<= 3;
ignore < len; ) {
unsigned char c;
a++; b++;
ignore += 8;
c = b[-1] ^ a[-1];
if (c) {
/* OK now we know that old and new differ at byte <ptr> and that <c> holds
* the bit differences. We have to find what bit is differing and report
* it as the number of identical bits. Note that low bit numbers are
* assigned to high positions in the byte, as we compare them as strings.
*/
ignore -= flsnz_long(c);
break;
}
}
return ignore;
}
/* Compare strings <a> and <b> byte-to-byte, from bit <ignore> to the last 0.
* Return the number of equal bits between strings, assuming that the first
* <ignore> bits are already identical. Note that parts or all of <ignore> bits
* may be rechecked. It is only passed here as a hint to speed up the check.
* The caller is responsible for not passing an <ignore> value larger than any
* of the two strings. However, referencing any bit from the trailing zero is
* permitted. Equal strings are reported as a negative number of bits, which
* indicates the end was reached.
*/
static
#if defined(__OPTIMIZE_SIZE__)
__attribute__((noinline))
#else
inline __attribute__((always_inline))
#endif
size_t string_equal_bits(const unsigned char *a,
const unsigned char *b,
size_t ignore)
{
unsigned char c, d;
size_t beg;
beg = ignore >> 3;
/* skip known and identical bits. We stop at the first different byte
* or at the first zero we encounter on either side.
*/
for (;; beg += 2) {
c = a[beg + 0];
d = b[beg + 0];
c ^= d;
if (__builtin_expect(c != 0, 0))
goto brk1;
if (!d)
goto same;
c = a[beg + 1];
d = b[beg + 1];
c ^= d;
if (__builtin_expect(c != 0, 0))
goto brk2;
if (!d)
goto same;
}
brk2:
beg++;
brk1:
/* OK now we know that a and b differ at byte <beg>.
* We have to find what bit is differing and report it as the number of
* identical bits. Note that low bit numbers are assigned to high positions
* in the byte, as we compare them as strings.
*/
return (beg << 3) + ((flsnz(c) - 1) ^ 7);
same:
return (size_t)-1;
}
/* pointer tagging / untagging, to turn ceb_root to ceb_node and conversely */
/* tag an untagged pointer (node -> root) */
static inline struct ceb_root *_ceb_dotag(const struct ceb_node *node, const uintptr_t tag)
{
return (struct ceb_root *)((uintptr_t)node + tag);
}
/* untag a tagged pointer (root -> node) */
static inline struct ceb_node *_ceb_untag(const struct ceb_root *node, const uintptr_t tag)
{
return (struct ceb_node *)((uintptr_t)node - tag);
}
/* clear a pointer's tag, regardless of its previous value */
static inline struct ceb_node *_ceb_clrtag(const struct ceb_root *node)
{
return (struct ceb_node *)((uintptr_t)node & ~(uintptr_t)1);
}
/* report the pointer's tag */
static inline uintptr_t _ceb_gettag(const struct ceb_root *node)
{
return (uintptr_t)node & (uintptr_t)1;
}
/* These macros are used by upper level files to create two variants of their
* exported functions:
* - one which uses sizeof(struct ceb_node) as the key offset, for nodes with
* adjacent keys ; these ones are named <pfx><sfx>(root, ...). This is
* defined when CEB_USE_BASE is defined.
* - one with an explicit key offset passed by the caller right after the
* root. This is defined when CEB_USE_OFST is defined.
* Both rely on a forced inline version with a body that immediately follows
* the declaration, so that the declaration looks like a single decorated
* function while 2 are built in practice. There are variants for the basic one
* with 0, 1 and 2 extra arguments after the root. The root and the key offset
* are always the first two arguments, and the key offset never appears in the
* first variant, it's always replaced by sizeof(struct ceb_node) in the calls
* to the inline version.
*/
#if defined(CEB_USE_BASE)
# define _CEB_DEF_BASE(x) x
#else
# define _CEB_DEF_BASE(x)
#endif
#if defined(CEB_USE_OFST)
# define _CEB_DEF_OFST(x) x
#else
# define _CEB_DEF_OFST(x)
#endif
#define CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2) \
_CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2)
#define _CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2); \
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1) { \
return _##pfx##sfx(arg1, sizeof(struct ceb_node)); \
}) \
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2) { \
return _##pfx##sfx(arg1, arg2); \
}) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2)
/* function body follows */
#define CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3) \
_CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3)
#define _CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3); \
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1, type3 arg3) { \
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3); \
}) \
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3) { \
return _##pfx##sfx(arg1, arg2, arg3); \
}) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3)
/* function body follows */
#define CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
_CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4)
#define _CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4); \
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1, type3 arg3, type4 arg4) { \
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3, arg4); \
}) \
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
return _##pfx##sfx(arg1, arg2, arg3, arg4); \
}) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4)
/* function body follows */
#define CEB_FDECL5(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5) \
_CEB_FDECL5(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5)
#define _CEB_FDECL5(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5); \
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1, type3 arg3, type4 arg4, type5 arg5) { \
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3, arg4, arg5); \
}) \
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5) { \
return _##pfx##sfx(arg1, arg2, arg3, arg4, arg5); \
}) \
static inline __attribute__((always_inline)) \
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5)
/* function body follows */
/* tree walk method: key, left, right */
enum ceb_walk_meth {
CEB_WM_FST, /* look up "first" (walk left only) */
CEB_WM_NXT, /* look up "next" (walk right once then left) */
CEB_WM_PRV, /* look up "prev" (walk left once then right) */
CEB_WM_LST, /* look up "last" (walk right only) */
/* all methods from CEB_WM_KEQ and above do have a key */
CEB_WM_KEQ, /* look up the node equal to the key */
CEB_WM_KGE, /* look up the node greater than or equal to the key */
CEB_WM_KGT, /* look up the node greater than the key */
CEB_WM_KLE, /* look up the node lower than or equal to the key */
CEB_WM_KLT, /* look up the node lower than the key */
CEB_WM_KNX, /* look up the node's key first, then find the next */
CEB_WM_KPR, /* look up the node's key first, then find the prev */
};
enum ceb_key_type {
CEB_KT_ADDR, /* the key is the node's address */
CEB_KT_U32, /* 32-bit unsigned word in key_u32 */
CEB_KT_U64, /* 64-bit unsigned word in key_u64 */
CEB_KT_MB, /* fixed size memory block in (key_u64,key_ptr), direct storage */
CEB_KT_IM, /* fixed size memory block in (key_u64,key_ptr), indirect storage */
CEB_KT_ST, /* NUL-terminated string in key_ptr, direct storage */
CEB_KT_IS, /* NUL-terminated string in key_ptr, indirect storage */
};
union ceb_key_storage {
uint32_t u32;
uint64_t u64;
unsigned long ul;
unsigned char mb[0];
unsigned char str[0];
unsigned char *ptr; /* for CEB_KT_IS */
};
/* returns the ceb_key_storage pointer for node <n> and offset <o> */
#define NODEK(n, o) ((union ceb_key_storage*)(((char *)(n)) + (o)))
/* Generic tree descent function. It must absolutely be inlined so that the
* compiler can eliminate the tests related to the various return pointers,
* which must either point to a local variable in the caller, or be NULL.
* It must not be called with an empty tree, it's the caller business to
* deal with this special case. It returns in ret_root the location of the
* pointer to the leaf (i.e. where we have to insert ourselves). The integer
* pointed to by ret_nside will contain the side the leaf should occupy at
* its own node, with the sibling being *ret_root. Note that keys for fixed-
* size arrays are passed in key_ptr with their length in key_u64. For keyless
* nodes whose address serves as the key, the pointer needs to be passed in
* key_ptr, and pxor64 will be used internally.
* The support for duplicates is advertised by ret_is_dup not being null; it
* will be filled on return with an indication whether the node belongs to a
* duplicate list or not.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_descend(struct ceb_root **root,
enum ceb_walk_meth meth,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *ret_nside,
struct ceb_root ***ret_root,
struct ceb_node **ret_lparent,
int *ret_lpside,
struct ceb_node **ret_nparent,
int *ret_npside,
struct ceb_node **ret_gparent,
int *ret_gpside,
struct ceb_root **ret_back,
int *ret_is_dup)
{
#if defined(__GNUC__) && (__GNUC__ >= 12) && !defined(__OPTIMIZE__)
/* Avoid a bogus warning with gcc 12 and above: it warns about negative
* memcmp() length in non-existing code paths at -O0, as reported here:
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114622
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overread"
#endif
struct ceb_node *node;
union ceb_key_storage *k;
struct ceb_node *gparent = NULL;
struct ceb_node *bnode = NULL;
struct ceb_node *lparent;
uint32_t pxor32 __attribute__((unused)) = ~0U; // previous xor between branches
uint64_t pxor64 __attribute__((unused)) = ~0ULL; // previous xor between branches
int gpside = 0; // side on the grand parent
long lpside = 0; // side on the leaf's parent
long brside = 0; // branch side when descending
size_t llen = 0; // left vs key matching length
size_t rlen = 0; // right vs key matching length
size_t plen = 0; // previous common len between branches
int is_leaf = 0; // set if the current node is a leaf
/* the parent will be the (possibly virtual) node so that
* &lparent->l == root, i.e. container_of(root, struct ceb_node, b[0]).
*/
lparent = (struct ceb_node *)((char *)root - offsetof(struct ceb_node, b));
gparent = lparent;
if (ret_nparent)
*ret_nparent = NULL;
if (ret_npside)
*ret_npside = 0;
/* for key-less descents we need to set the initial branch to take */
switch (meth) {
case CEB_WM_NXT:
case CEB_WM_LST:
brside = 1; // start right for next/last
break;
case CEB_WM_FST:
case CEB_WM_PRV:
default:
brside = 0; // start left for first/prev
break;
}
/* In case of deletion, we need the node's parent and side. It's
* normally discovered during the descent while comparing branches,
* but there's a case where it's not possible, it's when the root
* is the node's parent because the first node is the one we're
* looking for. So we have to perform this check here.
*/
if (meth >= CEB_WM_KEQ && ret_nparent && ret_npside) {
union ceb_key_storage *k = NODEK(_ceb_clrtag(*root), kofs);
if (((key_type == CEB_KT_MB || key_type == CEB_KT_IM) &&
(memcmp(key_ptr, ((key_type == CEB_KT_MB) ? k->mb : k->ptr), key_u64) == 0)) ||
((key_type == CEB_KT_ST || key_type == CEB_KT_IS) &&
(strcmp(key_ptr, (const void *)((key_type == CEB_KT_ST) ? k->str : k->ptr)) == 0))) {
*ret_nparent = lparent;
*ret_npside = lpside;
}
}
/* the previous xor is initialized to the largest possible inter-branch
* value so that it can never match on the first test as we want to use
* it to detect a leaf vs node. That's achieved with plen==0 for arrays
* and pxorXX==~0 for scalars.
*/
node = _ceb_clrtag(*root);
is_leaf = _ceb_gettag(*root);
if (ret_lpside) {
/* this is a deletion, benefits from prefetching */
__builtin_prefetch(node->b[0], 0);
__builtin_prefetch(node->b[1], 0);
}
while (1) {
union ceb_key_storage *lks, *rks;
struct ceb_node *ln, *rn, *next;
struct ceb_root *lr, *rr;
int next_leaf, lnl, rnl;
lr = node->b[0]; // tagged versions
rr = node->b[1];
/* get a copy of the corresponding nodes */
lnl = _ceb_gettag(lr);
ln = _ceb_clrtag(lr);
rnl = _ceb_gettag(rr);
rn = _ceb_clrtag(rr);
/* neither pointer is tagged */
k = NODEK(node, kofs);
if (is_leaf)
break;
/* Tests show that this is the most optimal location to start
* a prefetch for adjacent nodes.
*/
__builtin_prefetch(ln, 0);
__builtin_prefetch(rn, 0);
lks = NODEK(ln, kofs);
rks = NODEK(rn, kofs);
/* In the following block, we're dealing with type-specific
* operations which follow the same construct for each type:
* 1) calculate the new side for key lookups (otherwise keep
* the current side, e.g. for first/last). Doing it early
* allows the CPU to more easily predict next branches and
* is faster by ~10%. For complex bits we keep the length
* of identical bits instead of xor. We can also xor lkey
* and rkey with key and use it everywhere later but it
* doesn't seem to bring anything.
*
* 2) calculate the xor between the two sides to figure the
* split bit position. If the new split bit is before the
* previous one, we've reached a leaf: each leaf we visit
* had its node part already visited. The only way to
* distinguish them is that the inter-branch xor of the
* leaf will be the node's one, and will necessarily be
* larger than the previous node's xor if the node is
* above (we've already checked for direct descendent
* below). Said differently, if an inter-branch xor is
* strictly larger than the previous one, it necessarily
* is the one of an upper node, so what we're seeing
* cannot be the node, hence it's the leaf. The case where
* they're equal was already dealt with by the test at the
* end of the loop (node points to self). For scalar keys,
* we directly store the last xor value in pxorXX. For
* arrays and strings, instead we store the previous equal
* length.
*
* 3) for lookups, check if the looked key still has a chance
* to be below: if it has a xor with both branches that is
* larger than the xor between them, it cannot be there,
* since it means that it differs from these branches by
* at least one bit that's higher than the split bit,
* hence not common to these branches. In such cases:
* - if we're just doing a lookup, the key is not found
* and we fail.
* - if we are inserting, we must stop here and we have
* the guarantee to be above a node.
* - if we're deleting, it could be the key we were
* looking for so we have to check for it as long as
* it's still possible to keep a copy of the node's
* parent.
*/
if (key_type == CEB_KT_U32) {
uint32_t xor32; // left vs right branch xor
uint32_t kl, kr;
kl = lks->u32; kr = rks->u32;
if (meth >= CEB_WM_KEQ) {
kl ^= key_u32; kr ^= key_u32;
brside = kl >= kr;
}
xor32 = kl ^ kr;
if (meth >= CEB_WM_KEQ) {
/* let's stop if our key is not there */
if (kl > xor32 && kr > xor32)
break;
if (ret_nparent && !*ret_nparent && ret_npside) {
if (key_u32 == k->u32) {
*ret_nparent = lparent;
*ret_npside = lpside;
}
}
/* for pure lookups, no need to go down the leaf
* if we've found the key.
*/
if (!ret_root && !ret_lpside && !ret_lparent &&
!ret_gpside && !ret_gparent && !ret_back) {
if (key_u32 == k->u32)
break;
}
}
pxor32 = xor32;
}
else if (key_type == CEB_KT_U64) {
uint64_t xor64; // left vs right branch xor
uint64_t kl, kr;
kl = lks->u64; kr = rks->u64;
if (meth >= CEB_WM_KEQ) {
kl ^= key_u64; kr ^= key_u64;
brside = kl >= kr;
}
xor64 = kl ^ kr;
if (meth >= CEB_WM_KEQ) {
/* let's stop if our key is not there */
if (kl > xor64 && kr > xor64)
break;
if (ret_nparent && !*ret_nparent && ret_npside) {
if (key_u64 == k->u64) {
*ret_nparent = lparent;
*ret_npside = lpside;
}
}
/* for pure lookups, no need to go down the leaf
* if we've found the key.
*/
if (!ret_root && !ret_lpside && !ret_lparent &&
!ret_gpside && !ret_gparent && !ret_back) {
if (key_u64 == k->u64)
break;
}
}
pxor64 = xor64;
}
else if (key_type == CEB_KT_ADDR) {
uintptr_t xoraddr; // left vs right branch xor
uintptr_t kl, kr;
kl = (uintptr_t)lks; kr = (uintptr_t)rks;
if (meth >= CEB_WM_KEQ) {
kl ^= (uintptr_t)key_ptr; kr ^= (uintptr_t)key_ptr;
brside = kl >= kr;
}
xoraddr = kl ^ kr;
if (meth >= CEB_WM_KEQ) {
/* let's stop if our key is not there */
if (kl > xoraddr && kr > xoraddr)
break;
if (ret_nparent && !*ret_nparent && ret_npside) {
if ((uintptr_t)key_ptr == (uintptr_t)node) {
*ret_nparent = lparent;
*ret_npside = lpside;
}
}
/* for pure lookups, no need to go down the leaf
* if we've found the key.
*/
if (!ret_root && !ret_lpside && !ret_lparent &&
!ret_gpside && !ret_gparent && !ret_back) {
if ((uintptr_t)key_ptr == (uintptr_t)node)
break;
}
}
pxor64 = xoraddr;
}
else if (key_type == CEB_KT_MB || key_type == CEB_KT_IM) {
size_t xlen = 0; // left vs right matching length
if (meth >= CEB_WM_KEQ) {
/* measure identical lengths */
llen = equal_bits(key_ptr, (key_type == CEB_KT_MB) ? lks->mb : lks->ptr, plen, key_u64 << 3);
rlen = equal_bits(key_ptr, (key_type == CEB_KT_MB) ? rks->mb : rks->ptr, plen, key_u64 << 3);
brside = llen <= rlen;
}
xlen = equal_bits((key_type == CEB_KT_MB) ? lks->mb : lks->ptr,
(key_type == CEB_KT_MB) ? rks->mb : rks->ptr, plen, key_u64 << 3);
if (meth >= CEB_WM_KEQ) {
/* let's stop if our key is not there */
if (llen < xlen && rlen < xlen)
break;
if (ret_nparent && ret_npside && !*ret_nparent &&
((llen == key_u64 << 3) || (rlen == key_u64 << 3))) {
*ret_nparent = node;
*ret_npside = brside;
}
/* for pure lookups, no need to go down the leaf
* if we've found the key.
*/
if (!ret_root && !ret_lpside && !ret_lparent &&
!ret_gpside && !ret_gparent && !ret_back) {
if (llen == key_u64 << 3) {
node = ln;
plen = llen;
break;
}
if (rlen == key_u64 << 3) {
node = rn;
plen = rlen;
break;
}
}
}
plen = xlen;
}
else if (key_type == CEB_KT_ST || key_type == CEB_KT_IS) {
size_t xlen = 0; // left vs right matching length
if (meth >= CEB_WM_KEQ) {
/* Note that a negative length indicates an
* equal value with the final zero reached, but
* it is still needed to descend to find the
* leaf. We take that negative length for an
* infinite one, hence the uint cast.
*/
llen = string_equal_bits(key_ptr, (key_type == CEB_KT_ST) ? lks->str : lks->ptr, plen);
rlen = string_equal_bits(key_ptr, (key_type == CEB_KT_ST) ? rks->str : rks->ptr, plen);
brside = (size_t)llen <= (size_t)rlen;
if (ret_nparent && ret_npside && !*ret_nparent &&
((ssize_t)llen < 0 || (ssize_t)rlen < 0)) {
*ret_nparent = node;
*ret_npside = brside;
}
/* for pure lookups, no need to go down the leaf
* if we've found the key.
*/
if (!ret_root && !ret_lpside && !ret_lparent &&
!ret_gpside && !ret_gparent && !ret_back) {
if ((ssize_t)llen < 0) {
node = ln;
plen = llen;
break;
}
if ((ssize_t)rlen < 0) {
node = rn;
plen = rlen;
break;
}
}
}
/* the compiler cannot know this never happens and this helps it optimize the code */
if ((ssize_t)plen < 0)
__builtin_unreachable();
xlen = string_equal_bits((key_type == CEB_KT_ST) ? lks->str : lks->ptr,
(key_type == CEB_KT_ST) ? rks->str : rks->ptr, plen);
/* let's stop if our key is not there */
if (meth >= CEB_WM_KEQ && llen < xlen && rlen < xlen)
break;
plen = xlen;
}
/* shift all copies by one */
gparent = lparent;
gpside = lpside;
lparent = node;
lpside = brside;
if (brside) {
if (meth == CEB_WM_KPR || meth == CEB_WM_KLE || meth == CEB_WM_KLT)
bnode = node;
next = rn;
next_leaf = rnl;
root = &node->b[1];
/* change branch for key-less walks */
if (meth == CEB_WM_NXT)
brside = 0;
}
else {
if (meth == CEB_WM_KNX || meth == CEB_WM_KGE || meth == CEB_WM_KGT)
bnode = node;
next = ln;
next_leaf = lnl;
root = &node->b[0];
/* change branch for key-less walks */
if (meth == CEB_WM_PRV)
brside = 1;
}
if (next == node) {
/* loops over itself, it's either a leaf or the single and last list element of a dup sub-tree */
break;
}
/* let the compiler know there's no NULL in the tree */
if (!next)
__builtin_unreachable();
node = next;
is_leaf = next_leaf;
}
if (ret_is_dup) {
if (is_leaf && _ceb_gettag(node->b[0]) && _ceb_gettag(node->b[1]) &&
(_ceb_clrtag(node->b[0]) != node || _ceb_clrtag(node->b[1]) != node)) {
/* This leaf has two tagged pointers, with at least one not pointing
* to itself, it's not the nodeless leaf, it's a duplicate.
*/
*ret_is_dup = 1;
} else {
*ret_is_dup = 0;
}
}
/* here we're on the closest node from the requested value. It may be
* slightly lower (has a zero where we expected a one) or slightly
* larger has a one where we expected a zero). Thus another check is
* still deserved, depending on the matching method.
*/
/* update the pointers needed for modifications (insert, delete) */
if (ret_nside && meth >= CEB_WM_KEQ) {
switch (key_type) {
case CEB_KT_U32:
*ret_nside = key_u32 >= k->u32;
break;
case CEB_KT_U64:
*ret_nside = key_u64 >= k->u64;
break;
case CEB_KT_ADDR:
*ret_nside = (uintptr_t)key_ptr >= (uintptr_t)node;
break;
case CEB_KT_MB:
case CEB_KT_IM:
*ret_nside = (uint64_t)plen / 8 == key_u64 ||
memcmp(key_ptr + plen / 8, ((key_type == CEB_KT_MB) ? k->mb : k->ptr) + plen / 8, key_u64 - plen / 8) >= 0;
break;
case CEB_KT_ST:
case CEB_KT_IS:
*ret_nside = (ssize_t)plen < 0 ||
strcmp(key_ptr + plen / 8, (const void *)((key_type == CEB_KT_ST) ? k->str : k->ptr) + plen / 8) >= 0;
break;
}
}
if (ret_root) {
/* this node is going to be changed */
*ret_root = root;
__builtin_prefetch(root, 1);
}
/* info needed by delete */
if (ret_lpside)
*ret_lpside = lpside;
if (ret_lparent) {
/* this node is going to be changed */
*ret_lparent = lparent;
__builtin_prefetch(lparent, 1);
}
if (ret_gpside)
*ret_gpside = gpside;
if (ret_gparent)
*ret_gparent = gparent;
if (ret_back)
*ret_back = _ceb_dotag(bnode, 0);
if (meth >= CEB_WM_KEQ) {
/* For lookups, an equal value means an instant return. For insertions,
* it is the same, we want to return the previously existing value so
* that the caller can decide what to do. For deletion, we also want to
* return the pointer that's about to be deleted.
*/
if (key_type == CEB_KT_U32) {
if ((meth == CEB_WM_KEQ && k->u32 == key_u32) ||
(meth == CEB_WM_KNX && k->u32 == key_u32) ||
(meth == CEB_WM_KPR && k->u32 == key_u32) ||
(meth == CEB_WM_KGE && k->u32 >= key_u32) ||
(meth == CEB_WM_KGT && k->u32 > key_u32) ||
(meth == CEB_WM_KLE && k->u32 <= key_u32) ||
(meth == CEB_WM_KLT && k->u32 < key_u32))
return node;
}
else if (key_type == CEB_KT_U64) {
if ((meth == CEB_WM_KEQ && k->u64 == key_u64) ||
(meth == CEB_WM_KNX && k->u64 == key_u64) ||
(meth == CEB_WM_KPR && k->u64 == key_u64) ||
(meth == CEB_WM_KGE && k->u64 >= key_u64) ||
(meth == CEB_WM_KGT && k->u64 > key_u64) ||
(meth == CEB_WM_KLE && k->u64 <= key_u64) ||
(meth == CEB_WM_KLT && k->u64 < key_u64))
return node;
}
else if (key_type == CEB_KT_ADDR) {
if ((meth == CEB_WM_KEQ && (uintptr_t)node == (uintptr_t)key_ptr) ||
(meth == CEB_WM_KNX && (uintptr_t)node == (uintptr_t)key_ptr) ||
(meth == CEB_WM_KPR && (uintptr_t)node == (uintptr_t)key_ptr) ||
(meth == CEB_WM_KGE && (uintptr_t)node >= (uintptr_t)key_ptr) ||
(meth == CEB_WM_KGT && (uintptr_t)node > (uintptr_t)key_ptr) ||
(meth == CEB_WM_KLE && (uintptr_t)node <= (uintptr_t)key_ptr) ||
(meth == CEB_WM_KLT && (uintptr_t)node < (uintptr_t)key_ptr))
return node;
}
else if (key_type == CEB_KT_MB || key_type == CEB_KT_IM) {
int diff;
if ((uint64_t)plen / 8 == key_u64)
diff = 0;
else
diff = memcmp(((key_type == CEB_KT_MB) ? k->mb : k->ptr) + plen / 8, key_ptr + plen / 8, key_u64 - plen / 8);
if ((meth == CEB_WM_KEQ && diff == 0) ||
(meth == CEB_WM_KNX && diff == 0) ||
(meth == CEB_WM_KPR && diff == 0) ||
(meth == CEB_WM_KGE && diff >= 0) ||
(meth == CEB_WM_KGT && diff > 0) ||
(meth == CEB_WM_KLE && diff <= 0) ||
(meth == CEB_WM_KLT && diff < 0))
return node;
}
else if (key_type == CEB_KT_ST || key_type == CEB_KT_IS) {
int diff;
if ((ssize_t)plen < 0)
diff = 0;
else
diff = strcmp((const void *)((key_type == CEB_KT_ST) ? k->str : k->ptr) + plen / 8, key_ptr + plen / 8);
if ((meth == CEB_WM_KEQ && diff == 0) ||
(meth == CEB_WM_KNX && diff == 0) ||
(meth == CEB_WM_KPR && diff == 0) ||
(meth == CEB_WM_KGE && diff >= 0) ||
(meth == CEB_WM_KGT && diff > 0) ||
(meth == CEB_WM_KLE && diff <= 0) ||
(meth == CEB_WM_KLT && diff < 0))
return node;
}
} else if (meth == CEB_WM_FST || meth == CEB_WM_LST) {
return node;
} else if (meth == CEB_WM_PRV || meth == CEB_WM_NXT) {
return node;
}
/* lookups and deletes fail here */
/* let's return NULL to indicate the key was not found. For a lookup or
* a delete, it's a failure. For an insert, it's an invitation to the
* caller to proceed since the element is not there.
*/
return NULL;
#if defined(__GNUC__) && (__GNUC__ >= 12) && !defined(__OPTIMIZE__)
#pragma GCC diagnostic pop
#endif
}
/*
* Below are the functions that support duplicate keys (_ceb_*)
*/
/* Generic tree insertion function for trees with duplicate keys. Inserts node
* <node> into tree <tree>, with key type <key_type> and key <key_*>.
* Returns the inserted node or the one that already contains the same key.
* If <is_dup_ptr> is non-null, then duplicates are permitted and this variable
* is used to temporarily carry an internal state.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_insert(struct ceb_root **root,
struct ceb_node *node,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_root **parent;
struct ceb_node *ret;
int nside;
if (!*root) {
/* empty tree, insert a leaf only */
node->b[0] = node->b[1] = _ceb_dotag(node, 1);
*root = _ceb_dotag(node, 1);
return node;
}
ret = _ceb_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, &nside, &parent, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
if (!ret) {
/* The key was not in the tree, we can insert it. Better use an
* "if" like this because the inline function above already has
* quite identifiable code paths. This reduces the code and
* optimizes it a bit.
*/
if (nside) {
node->b[1] = _ceb_dotag(node, 1);
node->b[0] = *parent;
} else {
node->b[0] = _ceb_dotag(node, 1);
node->b[1] = *parent;
}
*parent = _ceb_dotag(node, 0);
ret = node;
} else if (is_dup_ptr) {
/* The key was found. We must insert after it as the last
* element of the dups list, which means that our left branch
* will point to the key, the right one to the first dup
* (i.e. previous dup's right if it exists, otherwise ourself)
* and the parent must point to us.
*/
node->b[0] = *parent;
if (*is_dup_ptr) {
node->b[1] = _ceb_untag(*parent, 1)->b[1];
_ceb_untag(*parent, 1)->b[1] = _ceb_dotag(node, 1);
} else {
node->b[1] = _ceb_dotag(node, 1);
}
*parent = _ceb_dotag(node, 1);
ret = node;
}
return ret;
}
/* Returns the first node or NULL if not found, assuming a tree made of keys of
* type <key_type>, and optionally <key_len> for fixed-size arrays (otherwise 0).
* If the tree starts with duplicates, the first of them is returned.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_first(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint64_t key_len,
int *is_dup_ptr)
{
struct ceb_node *node;
if (!*root)
return NULL;
node = _ceb_descend((struct ceb_root **)root, CEB_WM_FST, kofs, key_type, 0, key_len, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
if (node && is_dup_ptr && *is_dup_ptr) {
/* on a duplicate, the first node is right->left and it's a leaf */
node = _ceb_untag(_ceb_untag(node->b[1], 1)->b[0], 1);
}
return node;
}
/* Returns the last node or NULL if not found, assuming a tree made of keys of
* type <key_type>, and optionally <key_len> for fixed-size arrays (otherwise 0).
* If the tree ends with duplicates, the last of them is returned.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_last(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint64_t key_len,
int *is_dup_ptr)
{
if (!*root)
return NULL;
/* note for duplicates: the current scheme always returns the last one by default */
return _ceb_descend((struct ceb_root **)root, CEB_WM_LST, kofs, key_type, 0, key_len, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
/* Searches in the tree <root> made of keys of type <key_type>, for the next
* node after the one containing the key <key_*>. Returns NULL if not found.
* It's up to the caller to pass the current node's key in <key_*>. The
* approach consists in looking up that node first, recalling the last time a
* left turn was made, and returning the first node along the right branch at
* that fork.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_next_unique(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_root *restart;
if (!*root)
return NULL;
if (!_ceb_descend((struct ceb_root **)root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr))
return NULL;
if (!restart)
return NULL;
return _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
* node before the one containing the key <key_*>. Returns NULL if not found.
* It's up to the caller to pass the current node's key in <key_*>. The
* approach consists in looking up that node first, recalling the last time a
* right turn was made, and returning the last node along the left branch at
* that fork.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_prev_unique(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_root *restart;
if (!*root)
return NULL;
if (!_ceb_descend((struct ceb_root **)root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr))
return NULL;
if (!restart)
return NULL;
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
/* Searches in the tree <root> made of keys of type <key_type>, for the next
* node after <from> also containing key <key_*>. Returns NULL if not found.
* It's up to the caller to pass the current node's key in <key_*>.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_next_dup(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
const struct ceb_node *from)
{
struct ceb_node *node;
int is_dup;
if (!*root)
return NULL;
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &is_dup);
if (!node)
return NULL;
/* Normally at this point, if node != from, we've found a node that
* differs from the one we're starting from, which indicates that
* the starting point belongs to a dup list and is not the last one.
* We must then visit the other members. We cannot navigate from the
* regular leaf node (the first one) but we can easily verify if we're
* on that one by checking if it's node->b[1]->b[0], in which case we
* jump to node->b[1]. Otherwise we take from->b[1].
*/
if (node != from) {
if (_ceb_untag(node->b[1], 1)->b[0] == _ceb_dotag(from, 1))
return _ceb_untag(node->b[1], 1);
else
return _ceb_untag(from->b[1], 1);
}
/* there's no other dup here */
return NULL;
}
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
* node before <from> also containing key <key_*>. Returns NULL if not found.
* It's up to the caller to pass the current node's key in <key_*>.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_prev_dup(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
const struct ceb_node *from)
{
struct ceb_node *node;
int is_dup;
if (!*root)
return NULL;
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &is_dup);
if (!node)
return NULL;
/* Here we have several possibilities:
* - from == node => we've found our node. It may be a unique node,
* or the last one of a dup series. We'll sort that out thanks to
* is_dup, and if it's a dup, we'll use node->b[0].
* - from is not the first dup, so we haven't visited them all yet,
* hence we visit node->b[0] to switch to the previous dup.
* - from is the first dup so we've visited them all.
*/
if (is_dup && (node == from || _ceb_untag(node->b[1], 1)->b[0] != _ceb_dotag(from, 1)))
return _ceb_untag(from->b[0], 1);
/* there's no other dup here */
return NULL;
}
/* Searches in the tree <root> made of keys of type <key_type>, for the next
* node after <from> which contains key <key_*>. Returns NULL if not found.
* It's up to the caller to pass the current node's key in <key_*>. The
* approach consists in looking up that node first, recalling the last time a
* left turn was made, and returning the first node along the right branch at
* that fork. In case the current node belongs to a duplicate list, all dups
* will be visited in insertion order prior to jumping to different keys.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_next(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
const struct ceb_node *from,
int *is_dup_ptr)
{
struct ceb_root *restart;
struct ceb_node *node;
if (!*root)
return NULL;
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
if (!node)
return NULL;
/* Normally at this point, if node != from, we've found a node that
* differs from the one we're starting from, which indicates that
* the starting point belongs to a dup list and is not the last one.
* We must then visit the other members. We cannot navigate from the
* regular leaf node (the first one) but we can easily verify if we're
* on that one by checking if it's _ceb_untag(node->b[1], 0)->b[0], in which case we
* jump to node->b[1]. Otherwise we take from->b[1].
*/
if (node != from) {
if (_ceb_untag(node->b[1], 1)->b[0] == _ceb_dotag(from, 1))
return _ceb_untag(node->b[1], 1);
else
return _ceb_untag(from->b[1], 1);
}
/* Here the looked up node was found (node == from) and we can look up
* the next unique one if any.
*/
if (!restart)
return NULL;
/* this look up will stop on the topmost dup in a sub-tree which is
* also the last one. Thanks to restart we know that this entry exists.
*/
node = _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
if (node && is_dup_ptr && *is_dup_ptr) {
/* on a duplicate, the first node is right->left and it's a leaf */
node = _ceb_untag(_ceb_untag(node->b[1], 1)->b[0], 1);
}
return node;
}
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
* node before the one containing the key <key_*>. Returns NULL if not found.
* It's up to the caller to pass the current node's key in <key_*>. The
* approach consists in looking up that node first, recalling the last time a
* right turn was made, and returning the last node along the left branch at
* that fork. In case the current node belongs to a duplicate list, all dups
* will be visited in reverse insertion order prior to jumping to different
* keys.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_prev(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
const struct ceb_node *from,
int *is_dup_ptr)
{
struct ceb_root *restart;
struct ceb_node *node;
if (!*root)
return NULL;
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
if (!node)
return NULL;
/* Here we have several possibilities:
* - from == node => we've found our node. It may be a unique node,
* or the last one of a dup series. We'll sort that out thanks to
* is_dup, and if it's a dup, we'll use node->b[0].
* - from is not the first dup, so we haven't visited them all yet,
* hence we visit node->b[0] to switch to the previous dup.
* - from is the first dup so we've visited them all, we now need
* to jump to the previous unique value.
*/
if (is_dup_ptr && *is_dup_ptr && (node == from || _ceb_untag(node->b[1], 1)->b[0] != _ceb_dotag(from, 1)))
return _ceb_untag(from->b[0], 1);
/* look up the previous unique entry */
if (!restart)
return NULL;
/* Note that the descent stops on the last dup which is the one we want */
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
/* Searches in the tree <root> made of keys of type <key_type>, for the first
* node containing the key <key_*>. Returns NULL if not found.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_lookup(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_node *ret;
if (!*root)
return NULL;
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
if (ret && is_dup_ptr && *is_dup_ptr) {
/* on a duplicate, the first node is right->left and it's a leaf */
ret = _ceb_untag(_ceb_untag(ret->b[1], 1)->b[0], 1);
}
return ret;
}
/* Searches in the tree <root> made of keys of type <key_type>, for the last
* node containing the key <key_*> or the highest one that's lower than it.
* Returns NULL if not found.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_lookup_le(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_node *ret = NULL;
struct ceb_root *restart;
if (!*root)
return NULL;
/* note that for duplicates, we already find the last one */
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KLE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
if (ret)
return ret;
if (!restart)
return NULL;
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
/* Searches in the tree <root> made of keys of type <key_type>, for the last
* node containing the greatest key that is strictly lower than <key_*>.
* Returns NULL if not found. It's very similar to next() except that the
* looked up value doesn't need to exist.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_lookup_lt(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_node *ret = NULL;
struct ceb_root *restart;
if (!*root)
return NULL;
/* note that for duplicates, we already find the last one */
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KLT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
if (ret)
return ret;
if (!restart)
return NULL;
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
/* Searches in the tree <root> made of keys of type <key_type>, for the first
* node containing the key <key_*> or the smallest one that's greater than it.
* Returns NULL if not found. If <is_dup_ptr> is non-null, then duplicates are
* permitted and this variable is used to temporarily carry an internal state.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_lookup_ge(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_node *ret = NULL;
struct ceb_root *restart;
if (!*root)
return NULL;
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KGE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
if (!ret) {
if (!restart)
return NULL;
ret = _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
if (ret && is_dup_ptr && *is_dup_ptr) {
/* on a duplicate, the first node is right->left and it's a leaf */
ret = _ceb_untag(_ceb_untag(ret->b[1], 1)->b[0], 1);
}
return ret;
}
/* Searches in the tree <root> made of keys of type <key_type>, for the first
* node containing the lowest key that is strictly greater than <key_*>. Returns
* NULL if not found. It's very similar to prev() except that the looked up
* value doesn't need to exist. If <is_dup_ptr> is non-null, then duplicates are
* permitted and this variable is used to temporarily carry an internal state.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_lookup_gt(struct ceb_root *const *root,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_node *ret = NULL;
struct ceb_root *restart;
if (!*root)
return NULL;
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KGT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
if (!ret) {
if (!restart)
return NULL;
ret = _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
}
if (ret && is_dup_ptr && *is_dup_ptr) {
/* on a duplicate, the first node is right->left and it's a leaf */
ret = _ceb_untag(_ceb_untag(ret->b[1], 1)->b[0], 1);
}
return ret;
}
/* Searches in the tree <root> made of keys of type <key_type>, for the node
* that contains the key <key_*>, and deletes it. If <node> is non-NULL, a
* check is performed and the node found is deleted only if it matches. The
* found node is returned in any case, otherwise NULL if not found. A deleted
* node is detected since it has b[0]==NULL, which this functions also clears
* after operation. The function is idempotent, so it's safe to attempt to
* delete an already deleted node (NULL is returned in this case since the node
* was not in the tree). If <is_dup_ptr> is non-null, then duplicates are
* permitted and this variable is used to temporarily carry an internal state.
*/
static inline __attribute__((always_inline))
struct ceb_node *_ceb_delete(struct ceb_root **root,
struct ceb_node *node,
ptrdiff_t kofs,
enum ceb_key_type key_type,
uint32_t key_u32,
uint64_t key_u64,
const void *key_ptr,
int *is_dup_ptr)
{
struct ceb_node *lparent, *nparent, *gparent;
int lpside, npside, gpside;
struct ceb_node *ret = NULL;
if (node && !node->b[0]) {
/* NULL on a branch means the node is not in the tree */
return NULL;
}
if (!*root) {
/* empty tree, the node cannot be there */
goto done;
}
ret = _ceb_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL,
&lparent, &lpside, &nparent, &npside, &gparent, &gpside, NULL, is_dup_ptr);
if (!ret) {
/* key not found */
goto done;
}
if (is_dup_ptr && *is_dup_ptr) {
/* the node to be deleted belongs to a dup sub-tree whose ret
* is the last. The possibilities here are:
* 1) node==NULL => unspecified, we delete the first one,
* which is the tree leaf. The tree node (if it exists)
* is replaced by the first dup. There's nothing else to
* change.
* 2) node is the tree leaf. The tree node (if it exists)
* is replaced by the first dup.
* 3) node is a dup. We just delete the dup.
* In order to delete a dup, there are 4 cases:
* a) node==last and there's a single dup, it's this one
* -> *parent = node->b[0];
* b) node==last and there's another dup:
* -> *parent = node->b[0];
* node->b[0]->b[1] = node->b[1];
* (or (*parent)->b[1] = node->b[1] covers a and b)
* c) node==first != last:
* -> node->b[1]->b[0] = node->b[0];
* last->b[1] = node->b[1];
* (or (*parent)->b[1] = node->b[1] covers a,b,c)
* d) node!=first && !=last:
* -> node->b[1]->b[0] = node->b[0];
* node->b[0]->b[1] = node->b[1];
* a,b,c,d can be simplified as:
* ((node == first) ? last : node->b[0])->b[1] = node->b[1];
* *((node == last) ? parent : &node->b[1]->b[0]) = node->b[0];
*/
struct ceb_node *first, *last;
last = ret;
first = _ceb_untag(last->b[1], 1);
/* cases 1 and 2 below */
if (!node || node == _ceb_untag(first->b[0], 1)) {
/* node unspecified or the first, remove the leaf and
* convert the first entry to it.
*/
ret = _ceb_untag(first->b[0], 1); // update return node
last->b[1] = first->b[1]; // new first (remains OK if last==first)
if (ret->b[0] != _ceb_dotag(ret, 1) || ret->b[1] != _ceb_dotag(ret, 1)) {
/* not the nodeless leaf, a node exists, put it
* on the first and update its parent.
*/
first->b[0] = ret->b[0];
first->b[1] = ret->b[1];
nparent->b[npside] = _ceb_dotag(first, 0);
}
else {
/* first becomes the nodeless leaf since we only keep its leaf */
first->b[0] = first->b[1] = _ceb_dotag(first, 1);
}
/* first becomes a leaf, it must be tagged */
if (last != first)
_ceb_untag(last->b[1], 1)->b[0] = _ceb_dotag(first, 1);
/* done */
} else {
/* case 3: the node to delete is a dup, we only have to
* manipulate the list.
*/
ret = node;
((node == first) ? last : _ceb_untag(node->b[0], 1))->b[1] = node->b[1];
*((node == last) ? &lparent->b[lpside] : &_ceb_untag(node->b[1], 1)->b[0]) = node->b[0];
/* done */
}
goto mark_and_leave;
}
/* ok below the returned value is a real leaf, we have to adjust the tree */
if (ret == node || !node) {
if (&lparent->b[0] == root) {
/* there was a single entry, this one, so we're just
* deleting the nodeless leaf.
*/
*root = NULL;
goto mark_and_leave;
}
/* then we necessarily have a gparent */
gparent->b[gpside] = lparent->b[!lpside];
if (lparent == ret) {
/* we're removing the leaf and node together, nothing
* more to do.
*/
goto mark_and_leave;
}
if (ret->b[0] == ret->b[1]) {
/* we're removing the node-less item, the parent will
* take this role.
*/
lparent->b[0] = lparent->b[1] = _ceb_dotag(lparent, 1);
goto mark_and_leave;
}
/* more complicated, the node was split from the leaf, we have
* to find a spare one to switch it. The parent node is not
* needed anymore so we can reuse it.
*/
lparent->b[0] = ret->b[0];
lparent->b[1] = ret->b[1];
nparent->b[npside] = _ceb_dotag(lparent, 0);
mark_and_leave:
/* now mark the node as deleted */
ret->b[0] = NULL;
}
done:
return ret;
}
//#if defined(CEB_ENABLE_DUMP)
/* The dump functions are in cebtree-dbg.c */
void ceb_imm_default_dump_root(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_root *const *root, const void *ctx, int sub);
void ceb_imm_default_dump_node(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub);
void ceb_imm_default_dump_dups(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub);
void ceb_imm_default_dump_leaf(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub);
const struct ceb_node *ceb_imm_default_dump_tree(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_root *const *root,
uint64_t pxor, const void *last, int level, const void *ctx, int sub,
void (*root_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_root *const *root, const void *ctx, int sub),
void (*node_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub),
void (*dups_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub),
void (*leaf_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub));
//#endif /* CEB_ENABLE_DUMP */
#endif /* _CEBTREE_PRV_H */
|