1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
|
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>
// Ported from BearSSL
//
// Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
use bytes;
use crypto::math::*;
// Note from the BearSSL documentation:
//
// The ec_p256_m31 implementation supports P-256 with specialised code,
// including modular reduction routines that leverage the special format of the
// field modulus, and internal split of data as sequences of 30-bit words, which
// helps with carry propagation. ec_p256_m31 also includes fixed point
// optimisations, for the common case of multiplying the conventional generator
// point. These implementations are faster than the generic "i31" code, but with
// a larger code footprint.
//
// Convert an integer from unsigned big-endian encoding to a sequence of 30-bit
// words in little-endian order. The final "partial" word is returned.
fn be8tole30(dest: []u32, src: []u8) u32 = {
let acc: u32 = 0;
let acclen: u32 = 0;
let destpos = 0;
for (let i = len(src); i > 0; i -= 1) {
let b = src[i - 1]: u32;
if (acclen < 22) {
acc |= b << acclen;
acclen += 8;
} else {
dest[destpos] = (acc | (b << acclen)) & 0x3FFFFFFF;
destpos += 1;
acc = b >> (30 - acclen);
acclen -= 22;
};
};
return acc;
};
// Convert an integer (30-bit words, little-endian) to unsigned
// big-endian encoding. The total encoding length is provided; all
// the destination bytes will be filled.
fn le30tobe8(dest: []u8, src: []u32) void = {
let acc: u32 = 0;
let acclen: u32 = 0;
let srcpos: size = 0;
for (let i = len(dest); i > 0; i -= 1) {
if (acclen < 8) {
let w = src[srcpos];
srcpos += 1;
dest[i - 1] = (acc | (w << acclen)): u8;
acc = w >> (8 - acclen);
acclen += 22;
} else {
dest[i - 1] = acc: u8;
acc >>= 8;
acclen -= 8;
};
};
};
@test fn be8tole30() void = {
let be8: [6]u8 = [0x11, 0x22, 0xF3, 0x44, 0x55, 0x66];
let le30result: [2]u32 = [0...];
let be8result: [6]u8 = [0...];
le30result[1] = be8tole30(le30result, be8);
le30tobe8(be8result, le30result);
assert(bytes::equal(be8, be8result));
};
fn arsh(x: u32, n: u32) u32 = (x: i32 >> n: i32): u32;
fn arshw(x: u64, n: u32) u64 = (x: i64 >> n: i32): u64;
@test fn arsh() void = assert(arsh(0x80000000u32, 2) == 0xe0000000);
// Multiply two integers. Source integers are represented as arrays of
// nine 30-bit words, for values up to 2^270-1. Result is encoded over
// 18 words of 30 bits each.
fn mul9(d: []u32, a: []u32, b: []u32) void = {
// Maximum intermediate result is no more than
// 10376293531797946367, which fits in 64 bits. Reason:
//
// 10376293531797946367 = 9 * (2^30-1)^2 + 9663676406
// 10376293531797946367 < 9663676407 * 2^30
//
// Thus, adding together 9 products of 30-bit integers, with
// a carry of at most 9663676406, yields an integer that fits
// on 64 bits and generates a carry of at most 9663676406.
let t: [17]u64 = [0...];
t[0] = mulu32(a[0], b[0]);
t[1] = mulu32(a[0], b[1])
+ mulu32(a[1], b[0]);
t[2] = mulu32(a[0], b[2])
+ mulu32(a[1], b[1])
+ mulu32(a[2], b[0]);
t[3] = mulu32(a[0], b[3])
+ mulu32(a[1], b[2])
+ mulu32(a[2], b[1])
+ mulu32(a[3], b[0]);
t[4] = mulu32(a[0], b[4])
+ mulu32(a[1], b[3])
+ mulu32(a[2], b[2])
+ mulu32(a[3], b[1])
+ mulu32(a[4], b[0]);
t[5] = mulu32(a[0], b[5])
+ mulu32(a[1], b[4])
+ mulu32(a[2], b[3])
+ mulu32(a[3], b[2])
+ mulu32(a[4], b[1])
+ mulu32(a[5], b[0]);
t[6] = mulu32(a[0], b[6])
+ mulu32(a[1], b[5])
+ mulu32(a[2], b[4])
+ mulu32(a[3], b[3])
+ mulu32(a[4], b[2])
+ mulu32(a[5], b[1])
+ mulu32(a[6], b[0]);
t[7] = mulu32(a[0], b[7])
+ mulu32(a[1], b[6])
+ mulu32(a[2], b[5])
+ mulu32(a[3], b[4])
+ mulu32(a[4], b[3])
+ mulu32(a[5], b[2])
+ mulu32(a[6], b[1])
+ mulu32(a[7], b[0]);
t[8] = mulu32(a[0], b[8])
+ mulu32(a[1], b[7])
+ mulu32(a[2], b[6])
+ mulu32(a[3], b[5])
+ mulu32(a[4], b[4])
+ mulu32(a[5], b[3])
+ mulu32(a[6], b[2])
+ mulu32(a[7], b[1])
+ mulu32(a[8], b[0]);
t[9] = mulu32(a[1], b[8])
+ mulu32(a[2], b[7])
+ mulu32(a[3], b[6])
+ mulu32(a[4], b[5])
+ mulu32(a[5], b[4])
+ mulu32(a[6], b[3])
+ mulu32(a[7], b[2])
+ mulu32(a[8], b[1]);
t[10] = mulu32(a[2], b[8])
+ mulu32(a[3], b[7])
+ mulu32(a[4], b[6])
+ mulu32(a[5], b[5])
+ mulu32(a[6], b[4])
+ mulu32(a[7], b[3])
+ mulu32(a[8], b[2]);
t[11] = mulu32(a[3], b[8])
+ mulu32(a[4], b[7])
+ mulu32(a[5], b[6])
+ mulu32(a[6], b[5])
+ mulu32(a[7], b[4])
+ mulu32(a[8], b[3]);
t[12] = mulu32(a[4], b[8])
+ mulu32(a[5], b[7])
+ mulu32(a[6], b[6])
+ mulu32(a[7], b[5])
+ mulu32(a[8], b[4]);
t[13] = mulu32(a[5], b[8])
+ mulu32(a[6], b[7])
+ mulu32(a[7], b[6])
+ mulu32(a[8], b[5]);
t[14] = mulu32(a[6], b[8])
+ mulu32(a[7], b[7])
+ mulu32(a[8], b[6]);
t[15] = mulu32(a[7], b[8])
+ mulu32(a[8], b[7]);
t[16] = mulu32(a[8], b[8]);
// Propagate carries.
let cc: u64 = 0;
for (let i = 0z; i < 17; i += 1) {
let w = t[i] + cc;
d[i] = w: u32 & 0x3FFFFFFF;
cc = w >> 30;
};
d[17] = cc: u32;
};
// Square a 270-bit integer, represented as an array of nine 30-bit words.
// Result uses 18 words of 30 bits each.
fn square9(d: []u32, a: []u32) void = {
let t: [17]u64 = [0...];
t[0] = mulu32(a[0], a[0]);
t[1] = ((mulu32(a[0], a[1])) << 1);
t[2] = mulu32(a[1], a[1])
+ ((mulu32(a[0], a[2])) << 1);
t[3] = ((mulu32(a[0], a[3])
+ mulu32(a[1], a[2])) << 1);
t[4] = mulu32(a[2], a[2])
+ ((mulu32(a[0], a[4])
+ mulu32(a[1], a[3])) << 1);
t[5] = ((mulu32(a[0], a[5])
+ mulu32(a[1], a[4])
+ mulu32(a[2], a[3])) << 1);
t[6] = mulu32(a[3], a[3])
+ ((mulu32(a[0], a[6])
+ mulu32(a[1], a[5])
+ mulu32(a[2], a[4])) << 1);
t[7] = ((mulu32(a[0], a[7])
+ mulu32(a[1], a[6])
+ mulu32(a[2], a[5])
+ mulu32(a[3], a[4])) << 1);
t[8] = mulu32(a[4], a[4])
+ ((mulu32(a[0], a[8])
+ mulu32(a[1], a[7])
+ mulu32(a[2], a[6])
+ mulu32(a[3], a[5])) << 1);
t[9] = ((mulu32(a[1], a[8])
+ mulu32(a[2], a[7])
+ mulu32(a[3], a[6])
+ mulu32(a[4], a[5])) << 1);
t[10] = mulu32(a[5], a[5])
+ ((mulu32(a[2], a[8])
+ mulu32(a[3], a[7])
+ mulu32(a[4], a[6])) << 1);
t[11] = ((mulu32(a[3], a[8])
+ mulu32(a[4], a[7])
+ mulu32(a[5], a[6])) << 1);
t[12] = mulu32(a[6], a[6])
+ ((mulu32(a[4], a[8])
+ mulu32(a[5], a[7])) << 1);
t[13] = ((mulu32(a[5], a[8])
+ mulu32(a[6], a[7])) << 1);
t[14] = mulu32(a[7], a[7])
+ ((mulu32(a[6], a[8])) << 1);
t[15] = ((mulu32(a[7], a[8])) << 1);
t[16] = mulu32(a[8], a[8]);
// Propagate carries.
let cc: u64 = 0;
for (let i = 0z; i < 17; i += 1) {
let w = t[i] + cc;
d[i] = w: u32 & 0x3FFFFFFF;
cc = w >> 30;
};
d[17] = cc: u32;
};
// Base field modulus for P-256.
const F256: [_]u32 = [
0x3FFFFFFF, 0x3FFFFFFF, 0x3FFFFFFF, 0x0000003F, 0x00000000, 0x00000000,
0x00001000, 0x3FFFC000, 0x0000FFFF
];
// The 'b' curve equation coefficient for P-256.
const P256_B: [_]u32 = [
0x27D2604B, 0x2F38F0F8, 0x053B0F63, 0x0741AC33, 0x1886BC65, 0x2EF555DA,
0x293E7B3E, 0x0D762A8E, 0x00005AC6
];
// Addition in the field. Source operands shall fit on 257 bits; output
// will be lower than twice the modulus.
fn add_f256(d: []u32, a: []u32, b: []u32) void = {
let w: u32 = 0;
let cc: u32 = 0;
for (let i = 0z; i < 9; i += 1) {
w = a[i] + b[i] + cc;
d[i] = w & 0x3FFFFFFF;
cc = w >> 30;
};
w >>= 16;
d[8] &= 0xFFFF;
d[3] -= w << 6;
d[6] -= w << 12;
d[7] += w << 14;
cc = w;
for (let i = 0z; i < 9; i += 1) {
w = d[i] + cc;
d[i] = w & 0x3FFFFFFF;
cc = arsh(w, 30);
};
};
// Subtraction in the field. Source operands shall be smaller than twice
// the modulus; the result will fulfil the same property.
fn sub_f256(d: []u32, a: []u32, b: []u32) void = {
let w: u32 = 0;
let cc: u32 = 0;
// We really compute a - b + 2*p to make sure that the result is
// positive.
w = a[0] - b[0] - 0x00002;
d[0] = w & 0x3FFFFFFF;
w = a[1] - b[1] + arsh(w, 30);
d[1] = w & 0x3FFFFFFF;
w = a[2] - b[2] + arsh(w, 30);
d[2] = w & 0x3FFFFFFF;
w = a[3] - b[3] + arsh(w, 30) + 0x00080;
d[3] = w & 0x3FFFFFFF;
w = a[4] - b[4] + arsh(w, 30);
d[4] = w & 0x3FFFFFFF;
w = a[5] - b[5] + arsh(w, 30);
d[5] = w & 0x3FFFFFFF;
w = a[6] - b[6] + arsh(w, 30) + 0x02000;
d[6] = w & 0x3FFFFFFF;
w = a[7] - b[7] + arsh(w, 30) - 0x08000;
d[7] = w & 0x3FFFFFFF;
w = a[8] - b[8] + arsh(w, 30) + 0x20000;
d[8] = w & 0xFFFF;
w >>= 16;
d[8] &= 0xFFFF;
d[3] -= w << 6;
d[6] -= w << 12;
d[7] += w << 14;
cc = w;
for (let i = 0z; i < 9; i += 1) {
w = d[i] + cc;
d[i] = w & 0x3FFFFFFF;
cc = arsh(w, 30);
};
};
// Compute a multiplication in F256. Source operands shall be less than
// twice the modulus.
fn mul_f256(d: []u32, a: []u32, b: []u32) void = {
let t: [18]u32 = [0...];
let s: [18]u64 = [0...];
let x: u64 = 0;
mul9(t, a, b);
// Modular reduction: each high word in added/subtracted where
// necessary.
//
// The modulus is:
// p = 2^256 - 2^224 + 2^192 + 2^96 - 1
// Therefore:
// 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
//
// For a word x at bit offset n (n >= 256), we have:
// x*2^n = x*2^(n-32) - x*2^(n-64)
// - x*2^(n - 160) + x*2^(n-256) mod p
//
// Thus, we can nullify the high word if we reinject it at some
// proper emplacements.
//
// We use 64-bit intermediate words to allow for carries to
// accumulate easily, before performing the final propagation.
for (let i = 0; i < 18; i += 1) {
s[i] = t[i];
};
for (let i = 17; i >= 9; i -= 1) {
let y = s[i];
s[i - 1] += arshw(y, 2);
s[i - 2] += (y << 28) & 0x3FFFFFFF;
s[i - 2] -= arshw(y, 4);
s[i - 3] -= (y << 26) & 0x3FFFFFFF;
s[i - 5] -= arshw(y, 10);
s[i - 6] -= (y << 20) & 0x3FFFFFFF;
s[i - 8] += arshw(y, 16);
s[i - 9] += (y << 14) & 0x3FFFFFFF;
};
// Carry propagation must be signed. Moreover, we may have overdone
// it a bit, and obtain a negative result.
//
// The loop above ran 9 times; each time, each word was augmented
// by at most one extra word (in absolute value). Thus, the top
// word must in fine fit in 39 bits, so the carry below will fit
// on 9 bits.
let cc: u64 = 0;
for (let i = 0z; i < 9; i += 1) {
x = s[i] + cc;
d[i] = x: u32 & 0x3FFFFFFF;
cc = arshw(x, 30);
};
// All nine words fit on 30 bits, but there may be an extra
// carry for a few bits (at most 9), and that carry may be
// negative. Moreover, we want the result to fit on 257 bits.
// The two lines below ensure that the word in d[] has length
// 256 bits, and the (signed) carry (beyond 2^256) is in cc. The
// significant length of cc is less than 24 bits, so we will be
// able to switch to 32-bit operations.
cc = arshw(x, 16);
d[8] &= 0xFFFF;
// One extra round of reduction, for cc*2^256, which means
// adding cc*(2^224-2^192-2^96+1) to a 256-bit (nonnegative)
// value. If cc is negative, then it may happen (rarely, but
// not neglectibly so) that the result would be negative. In
// order to avoid that, if cc is negative, then we add the
// modulus once. Note that if cc is negative, then propagating
// that carry must yield a value lower than the modulus, so
// adding the modulus once will keep the final result under
// twice the modulus.
let z = cc: u32;
d[3] -= z << 6;
d[6] -= (z << 12) & 0x3FFFFFFF;
d[7] -= arsh(z, 18);
d[7] += (z << 14) & 0x3FFFFFFF;
d[8] += arsh(z, 16);
let c = z >> 31;
d[0] -= c;
d[3] += c << 6;
d[6] += c << 12;
d[7] -= c << 14;
d[8] += c << 16;
for (let i = 0z; i < 9; i += 1) {
let w = d[i] + z;
d[i] = w & 0x3FFFFFFF;
z = arsh(w, 30);
};
};
// Compute a square in F256. Source operand shall be less than
// twice the modulus.
fn square_f256(d: []u32, a: []u32) void = {
let t: [18]u32 = [0...];
let s: [18]u64 = [0...];
square9(t, a);
// Modular reduction: each high word in added/subtracted where
// necessary.
//
// The modulus is:
// p = 2^256 - 2^224 + 2^192 + 2^96 - 1
// Therefore:
// 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
//
// For a word x at bit offset n (n >= 256), we have:
// x*2^n = x*2^(n-32) - x*2^(n-64)
// - x*2^(n - 160) + x*2^(n-256) mod p
//
// Thus, we can nullify the high word if we reinject it at some
// proper emplacements.
//
// We use 64-bit intermediate words to allow for carries to
// accumulate easily, before performing the final propagation.
for (let i = 0; i < 18; i += 1) {
s[i] = t[i];
};
for (let i = 17; i >= 9; i -= 1) {
let y = s[i];
s[i - 1] += arshw(y, 2);
s[i - 2] += (y << 28) & 0x3FFFFFFF;
s[i - 2] -= arshw(y, 4);
s[i - 3] -= (y << 26) & 0x3FFFFFFF;
s[i - 5] -= arshw(y, 10);
s[i - 6] -= (y << 20) & 0x3FFFFFFF;
s[i - 8] += arshw(y, 16);
s[i - 9] += (y << 14) & 0x3FFFFFFF;
};
// Carry propagation must be signed. Moreover, we may have overdone
// it a bit, and obtain a negative result.
//
// The loop above ran 9 times; each time, each word was augmented
// by at most one extra word (in absolute value). Thus, the top
// word must in fine fit in 39 bits, so the carry below will fit
// on 9 bits.
let cc: u64 = 0;
let x: u64 = 0;
for (let i = 0; i < 9; i += 1) {
x = s[i] + cc;
d[i] = x: u32 & 0x3FFFFFFF;
cc = arshw(x, 30);
};
// All nine words fit on 30 bits, but there may be an extra
// carry for a few bits (at most 9), and that carry may be
// negative. Moreover, we want the result to fit on 257 bits.
// The two lines below ensure that the word in d[] has length
// 256 bits, and the (signed) carry (beyond 2^256) is in cc. The
// significant length of cc is less than 24 bits, so we will be
// able to switch to 32-bit operations.
cc = arshw(x, 16);
d[8] &= 0xFFFF;
// One extra round of reduction, for cc*2^256, which means
// adding cc*(2^224-2^192-2^96+1) to a 256-bit (nonnegative)
// value. If cc is negative, then it may happen (rarely, but
// not neglectibly so) that the result would be negative. In
// order to avoid that, if cc is negative, then we add the
// modulus once. Note that if cc is negative, then propagating
// that carry must yield a value lower than the modulus, so
// adding the modulus once will keep the final result under
// twice the modulus.
let z = cc: u32;
d[3] -= z << 6;
d[6] -= (z << 12) & 0x3FFFFFFF;
d[7] -= arsh(z, 18);
d[7] += (z << 14) & 0x3FFFFFFF;
d[8] += arsh(z, 16);
let c = z >> 31;
d[0] -= c;
d[3] += c << 6;
d[6] += c << 12;
d[7] -= c << 14;
d[8] += c << 16;
for (let i = 0z; i < 9; i += 1) {
let w = d[i] + z;
d[i] = w & 0x3FFFFFFF;
z = arsh(w, 30);
};
};
// Perform a "final reduction" in field F256 (field for curve P-256).
// The source value must be less than twice the modulus. If the value
// is not lower than the modulus, then the modulus is subtracted and
// this function returns 1; otherwise, it leaves it untouched and it
// returns 0.
fn reduce_final_f256(d: []u32) u32 = {
let t: [9]u32 = [0...];
let cc: u32 = 0;
for (let i = 0; i < 9; i += 1) {
let w = d[i] - F256[i] - cc;
cc = w >> 31;
t[i] = w & 0x3FFFFFFF;
};
cc ^= 1;
ccopyu32(cc, d, t);
return cc;
};
// Jacobian coordinates for a point in P-256: affine coordinates (X,Y)
// are such that:
// X = x / z^2
// Y = y / z^3
// For the point at infinity, z = 0.
// Each point thus admits many possible representations.
//
// Coordinates are represented in arrays of 32-bit integers, each holding
// 30 bits of data. Values may also be slightly greater than the modulus,
// but they will always be lower than twice the modulus.
type p256_jacobian = struct {
x: [9]u32,
y: [9]u32,
z: [9]u32,
};
// Convert a point to affine coordinates:
// - If the point is the point at infinity, then all three coordinates
// are set to 0.
// - Otherwise, the 'z' coordinate is set to 1, and the 'x' and 'y'
// coordinates are the 'X' and 'Y' affine coordinates.
// The coordinates are guaranteed to be lower than the modulus.
fn p256_to_affine(p: *p256_jacobian) void = {
let t1: [9]u32 = [0...];
let t2: [9]u32 = [0...];
// Invert z with a modular exponentiation: the modulus is
// p = 2^256 - 2^224 + 2^192 + 2^96 - 1, and the exponent is
// p-2. Exponent bit pattern (from high to low) is:
// - 32 bits of value 1
// - 31 bits of value 0
// - 1 bit of value 1
// - 96 bits of value 0
// - 94 bits of value 1
// - 1 bit of value 0
// - 1 bit of value 1
// Thus, we precompute z^(2^31-1) to speed things up.
//
// If z = 0 (point at infinity) then the modular exponentiation
// will yield 0, which leads to the expected result (all three
// coordinates set to 0).
// A simple square-and-multiply for z^(2^31-1). We could save about
// two dozen multiplications here with an addition chain, but
// this would require a bit more code, and extra stack buffers.
t1[..] = p.z[..];
for (let i = 0; i < 30; i += 1) {
square_f256(t1, t1);
mul_f256(t1, t1, p.z);
};
// Square-and-multiply. Apart from the squarings, we have a few
// multiplications to set bits to 1; we multiply by the original z
// for setting 1 bit, and by t1 for setting 31 bits.
t2[..] = p.z[..];
for (let i = 1; i < 256; i += 1) {
square_f256(t2, t2);
switch (i) {
case 31, 190, 221, 252 =>
mul_f256(t2, t2, t1);
case 63, 253, 255 =>
mul_f256(t2, t2, p.z);
case => void;
};
};
// Now that we have 1/z, multiply x by 1/z^2 and y by 1/z^3.
mul_f256(t1, t2, t2);
mul_f256(p.x, t1, p.x);
mul_f256(t1, t1, t2);
mul_f256(p.y, t1, p.y);
reduce_final_f256(p.x);
reduce_final_f256(p.y);
// Multiply z by 1/z. If z = 0, then this will yield 0, otherwise
// this will set z to 1.
mul_f256(p.z, p.z, t2);
reduce_final_f256(p.z);
};
// Double a point in P-256. This function works for all valid points,
// including the point at infinity.
fn p256_double(q: *p256_jacobian) void = {
// Doubling formulas are:
//
// s = 4*x*y^2
// m = 3*(x + z^2)*(x - z^2)
// x' = m^2 - 2*s
// y' = m*(s - x') - 8*y^4
// z' = 2*y*z
//
// These formulas work for all points, including points of order 2
// and points at infinity:
// - If y = 0 then z' = 0. But there is no such point in P-256
// anyway.
// - If z = 0 then z' = 0.
let t1: [9]u32 = [0...];
let t2: [9]u32 = [0...];
let t3: [9]u32 = [0...];
let t4: [9]u32 = [0...];
// Compute z^2 in t1.
square_f256(t1, q.z);
// Compute x-z^2 in t2 and x+z^2 in t1.
add_f256(t2, q.x, t1);
sub_f256(t1, q.x, t1);
// Compute 3*(x+z^2)*(x-z^2) in t1.
mul_f256(t3, t1, t2);
add_f256(t1, t3, t3);
add_f256(t1, t3, t1);
// Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
square_f256(t3, q.y);
add_f256(t3, t3, t3);
mul_f256(t2, q.x, t3);
add_f256(t2, t2, t2);
// Compute x' = m^2 - 2*s.
square_f256(q.x, t1);
sub_f256(q.x, q.x, t2);
sub_f256(q.x, q.x, t2);
// Compute z' = 2*y*z.
mul_f256(t4, q.y, q.z);
add_f256(q.z, t4, t4);
// Compute y' = m*(s - x') - 8*y^4. Note that we already have
// 2*y^2 in t3.
sub_f256(t2, t2, q.x);
mul_f256(q.y, t1, t2);
square_f256(t4, t3);
add_f256(t4, t4, t4);
sub_f256(q.y, q.y, t4);
};
// Add point P2 to point P1.
//
// This function computes the wrong result in the following cases:
//
// - If P1 == 0 but P2 != 0
// - If P1 != 0 but P2 == 0
// - If P1 == P2
//
// In all three cases, P1 is set to the point at infinity.
//
// Returned value is 0 if one of the following occurs:
//
// - P1 and P2 have the same Y coordinate
// - P1 == 0 and P2 == 0
// - The Y coordinate of one of the points is 0 and the other point is
// the point at infinity.
//
// The third case cannot actually happen with valid points, since a point
// with Y == 0 is a point of order 2, and there is no point of order 2 on
// curve P-256.
//
// Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
// can apply the following:
//
// - If the result is not the point at infinity, then it is correct.
// - Otherwise, if the returned value is 1, then this is a case of
// P1+P2 == 0, so the result is indeed the point at infinity.
// - Otherwise, P1 == P2, so a "double" operation should have been
// performed.
fn p256_add(p1: *p256_jacobian, p2: *p256_jacobian) u32 = {
// Addtions formulas are:
//
// u1 = x1 * z2^2
// u2 = x2 * z1^2
// s1 = y1 * z2^3
// s2 = y2 * z1^3
// h = u2 - u1
// r = s2 - s1
// x3 = r^2 - h^3 - 2 * u1 * h^2
// y3 = r * (u1 * h^2 - x3) - s1 * h^3
// z3 = h * z1 * z2
let t1: [9]u32 = [0...];
let t2: [9]u32 = [0...];
let t3: [9]u32 = [0...];
let t4: [9]u32 = [0...];
let t5: [9]u32 = [0...];
let t6: [9]u32 = [0...];
let t7: [9]u32 = [0...];
let ret: u32 = 0;
// Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
square_f256(t3, p2.z);
mul_f256(t1, p1.x, t3);
mul_f256(t4, p2.z, t3);
mul_f256(t3, p1.y, t4);
// Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
square_f256(t4, p1.z);
mul_f256(t2, p2.x, t4);
mul_f256(t5, p1.z, t4);
mul_f256(t4, p2.y, t5);
// Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
// We need to test whether r is zero, so we will do some extra
// reduce.
sub_f256(t2, t2, t1);
sub_f256(t4, t4, t3);
reduce_final_f256(t4);
ret = 0;
for (let i = 0; i < 9; i += 1) {
ret |= t4[i];
};
ret = (ret | -ret) >> 31;
// Compute u1*h^2 (in t6) and h^3 (in t5);
square_f256(t7, t2);
mul_f256(t6, t1, t7);
mul_f256(t5, t7, t2);
// Compute x3 = r^2 - h^3 - 2*u1*h^2.
square_f256(p1.x, t4);
sub_f256(p1.x, p1.x, t5);
sub_f256(p1.x, p1.x, t6);
sub_f256(p1.x, p1.x, t6);
// Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
sub_f256(t6, t6, p1.x);
mul_f256(p1.y, t4, t6);
mul_f256(t1, t5, t3);
sub_f256(p1.y, p1.y, t1);
// Compute z3 = h*z1*z2.
mul_f256(t1, p1.z, p2.z);
mul_f256(p1.z, t1, t2);
return ret;
};
// Add point P2 to point P1. This is a specialised function for the
// case when P2 is a non-zero point in affine coordinate.
//
// This function computes the wrong result in the following cases:
//
// - If P1 == 0
// - If P1 == P2
//
// In both cases, P1 is set to the point at infinity.
//
// Returned value is 0 if one of the following occurs:
//
// - P1 and P2 have the same Y coordinate
// - The Y coordinate of P2 is 0 and P1 is the point at infinity.
//
// The second case cannot actually happen with valid points, since a point
// with Y == 0 is a point of order 2, and there is no point of order 2 on
// curve P-256.
//
// Therefore, assuming that P1 != 0 on input, then the caller
// can apply the following:
//
// - If the result is not the point at infinity, then it is correct.
// - Otherwise, if the returned value is 1, then this is a case of
// P1+P2 == 0, so the result is indeed the point at infinity.
// - Otherwise, P1 == P2, so a "double" operation should have been
// performed.
fn p256_add_mixed(p1: *p256_jacobian, p2: *p256_jacobian) u32 = {
// Addtions formulas are:
//
// u1 = x1
// u2 = x2 * z1^2
// s1 = y1
// s2 = y2 * z1^3
// h = u2 - u1
// r = s2 - s1
// x3 = r^2 - h^3 - 2 * u1 * h^2
// y3 = r * (u1 * h^2 - x3) - s1 * h^3
// z3 = h * z1
let t1: [9]u32 = [0...];
let t2: [9]u32 = [0...];
let t3: [9]u32 = [0...];
let t4: [9]u32 = [0...];
let t5: [9]u32 = [0...];
let t6: [9]u32 = [0...];
let t7: [9]u32 = [0...];
let ret: u32 = 0;
// Compute u1 = x1 (in t1) and s1 = y1 (in t3).
t1[..] = p1.x[..];
t3[..] = p1.y[..];
// Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
square_f256(t4, p1.z);
mul_f256(t2, p2.x, t4);
mul_f256(t5, p1.z, t4);
mul_f256(t4, p2.y, t5);
// Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
// We need to test whether r is zero, so we will do some extra
// reduce.
sub_f256(t2, t2, t1);
sub_f256(t4, t4, t3);
reduce_final_f256(t4);
ret = 0;
for (let i = 0; i < 9; i += 1) {
ret |= t4[i];
};
ret = (ret | -ret) >> 31;
// Compute u1*h^2 (in t6) and h^3 (in t5);
square_f256(t7, t2);
mul_f256(t6, t1, t7);
mul_f256(t5, t7, t2);
// Compute x3 = r^2 - h^3 - 2*u1*h^2.
square_f256(p1.x, t4);
sub_f256(p1.x, p1.x, t5);
sub_f256(p1.x, p1.x, t6);
sub_f256(p1.x, p1.x, t6);
// Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
sub_f256(t6, t6, p1.x);
mul_f256(p1.y, t4, t6);
mul_f256(t1, t5, t3);
sub_f256(p1.y, p1.y, t1);
// Compute z3 = h*z1*z2.
mul_f256(p1.z, p1.z, t2);
return ret;
};
// Decode a P-256 point. This function does not support the point at
// infinity. Returned value is 0 if the point is invalid, 1 otherwise.
fn p256_decode(p: *p256_jacobian, src: const []u8) u32 = {
let tx: [9]u32 = [0...];
let ty: [9]u32 = [0...];
let t1: [9]u32 = [0...];
let t2: [9]u32 = [0...];
let bad: u32 = 0;
if (len(src) != 65) {
return 0;
};
let buf = src;
// First byte must be 0x04 (uncompressed format). We could support
// "hybrid format" (first byte is 0x06 or 0x07, and encodes the
// least significant bit of the Y coordinate), but it is explicitly
// forbidden by RFC 5480 (section 2.2).
bad = nequ32(buf[0], 0x04);
// Decode the coordinates, and check that they are both lower
// than the modulus.
tx[8] = be8tole30(tx, buf[1..33]);
ty[8] = be8tole30(ty, buf[33..]);
bad |= reduce_final_f256(tx);
bad |= reduce_final_f256(ty);
// Check curve equation.
square_f256(t1, tx);
mul_f256(t1, tx, t1);
square_f256(t2, ty);
sub_f256(t1, t1, tx);
sub_f256(t1, t1, tx);
sub_f256(t1, t1, tx);
add_f256(t1, t1, P256_B);
sub_f256(t1, t1, t2);
reduce_final_f256(t1);
for (let i = 0; i < 9; i += 1) {
bad |= t1[i];
};
// Copy coordinates to the point structure.
p.x[..] = tx[..];
p.y[..] = ty[..];
p.z[..] = [0...];
p.z[0] = 1;
return equ32(bad, 0);
};
// Encode a point into a buffer. This function assumes that the point is
// valid, in affine coordinates, and not the point at infinity.
fn p256_encode(dest: []u8, p: *p256_jacobian) void = {
dest[0] = 0x04;
le30tobe8(dest[1..33], p.x);
le30tobe8(dest[33..], p.y);
};
// Multiply a curve point by an integer. The integer is assumed to be
// lower than the curve order, and the base point must not be the point
// at infinity.
fn p256_mul(p: *p256_jacobian, x: []u8) void = {
// qz is a flag that is initially 1, and remains equal to 1
// as long as the point is the point at infinity.
//
// We use a 2-bit window to handle multiplier bits by pairs.
// The precomputed window really is the points P2 and P3.
let qz: u32 = 1;
let p2 = p256_jacobian { ... };
let p3 = p256_jacobian { ... };
let q = p256_jacobian { ... };
let t = p256_jacobian { ... };
let u = p256_jacobian { ... };
let xpos: size = 0;
// Compute window values.
p2 = *p;
p256_double(&p2);
p3 = *p;
p256_add(&p3, &p2);
// We start with Q = 0. We process multiplier bits 2 by 2.
for (let i = len(x); i > 0; i -= 1) {
for (let k = 6i8; k >= 0; k -= 2) {
let bits: u32 = 0;
let bnz: u32 = 0;
p256_double(&q);
p256_double(&q);
t = *p;
u = q;
bits = (x[xpos] >> k: u8) & 3u32;
bnz = nequ32(bits, 0);
jaccopy(equ32(bits, 2), &t, &p2);
jaccopy(equ32(bits, 3), &t, &p3);
p256_add(&u, &t);
jaccopy(bnz & qz, &q, &t);
jaccopy(bnz & ~qz, &q, &u);
qz &= ~bnz;
};
xpos += 1;
};
*p = q;
};
fn jaccopy(ctl: u32, dest: *p256_jacobian, src: *p256_jacobian) void = {
ccopyu32(ctl, dest.x, src.x);
ccopyu32(ctl, dest.y, src.y);
ccopyu32(ctl, dest.z, src.z);
};
// Precomputed window: k*G points, where G is the curve generator, and k
// is an integer from 1 to 15 (inclusive). The X and Y coordinates of
// the point are encoded as 9 words of 30 bits each (little-endian
// order).
const gwin: [15][18]u32 = [
[
0x1898c296, 0x1284e517, 0x1eb33a0f, 0x00df604b, 0x2440f277,
0x339b958e, 0x04247f8b, 0x347cb84b, 0x00006b17, 0x37bf51f5,
0x2ed901a0, 0x3315ecec, 0x338cd5da, 0x0f9e162b, 0x1fad29f0,
0x27f9b8ee, 0x10b8bf86, 0x00004fe3,
],
[
0x07669978, 0x182d23f1, 0x3f21b35a, 0x225a789d, 0x351ac3c0,
0x08e00c12, 0x34f7e8a5, 0x1ec62340, 0x00007cf2, 0x227873d1,
0x3812de74, 0x0e982299, 0x1f6b798f, 0x3430dbba, 0x366b1a7d,
0x2d040293, 0x154436e3, 0x00000777,
],
[
0x06e7fd6c, 0x2d05986f, 0x3ada985f, 0x31adc87b, 0x0bf165e6,
0x1fbe5475, 0x30a44c8f, 0x3934698c, 0x00005ecb, 0x227d5032,
0x29e6c49e, 0x04fb83d9, 0x0aac0d8e, 0x24a2ecd8, 0x2c1b3869,
0x0ff7e374, 0x19031266, 0x00008734,
],
[
0x2b030852, 0x024c0911, 0x05596ef5, 0x07f8b6de, 0x262bd003,
0x3779967b, 0x08fbba02, 0x128d4cb4, 0x0000e253, 0x184ed8c6,
0x310b08fc, 0x30ee0055, 0x3f25b0fc, 0x062d764e, 0x3fb97f6a,
0x33cc719d, 0x15d69318, 0x0000e0f1,
],
[
0x03d033ed, 0x05552837, 0x35be5242, 0x2320bf47, 0x268fdfef,
0x13215821, 0x140d2d78, 0x02de9454, 0x00005159, 0x3da16da4,
0x0742ed13, 0x0d80888d, 0x004bc035, 0x0a79260d, 0x06fcdafe,
0x2727d8ae, 0x1f6a2412, 0x0000e0c1,
],
[
0x3c2291a9, 0x1ac2aba4, 0x3b215b4c, 0x131d037a, 0x17dde302,
0x0c90b2e2, 0x0602c92d, 0x05ca9da9, 0x0000b01a, 0x0fc77fe2,
0x35f1214e, 0x07e16bdf, 0x003ddc07, 0x2703791c, 0x3038b7ee,
0x3dad56fe, 0x041d0c8d, 0x0000e85c,
],
[
0x3187b2a3, 0x0018a1c0, 0x00fef5b3, 0x3e7e2e2a, 0x01fb607e,
0x2cc199f0, 0x37b4625b, 0x0edbe82f, 0x00008e53, 0x01f400b4,
0x15786a1b, 0x3041b21c, 0x31cd8cf2, 0x35900053, 0x1a7e0e9b,
0x318366d0, 0x076f780c, 0x000073eb,
],
[
0x1b6fb393, 0x13767707, 0x3ce97dbb, 0x348e2603, 0x354cadc1,
0x09d0b4ea, 0x1b053404, 0x1de76fba, 0x000062d9, 0x0f09957e,
0x295029a8, 0x3e76a78d, 0x3b547dae, 0x27cee0a2, 0x0575dc45,
0x1d8244ff, 0x332f647a, 0x0000ad5a,
],
[
0x10949ee0, 0x1e7a292e, 0x06df8b3d, 0x02b2e30b, 0x31f8729e,
0x24e35475, 0x30b71878, 0x35edbfb7, 0x0000ea68, 0x0dd048fa,
0x21688929, 0x0de823fe, 0x1c53faa9, 0x0ea0c84d, 0x052a592a,
0x1fce7870, 0x11325cb2, 0x00002a27,
],
[
0x04c5723f, 0x30d81a50, 0x048306e4, 0x329b11c7, 0x223fb545,
0x085347a8, 0x2993e591, 0x1b5aca8e, 0x0000cef6, 0x04af0773,
0x28d2eea9, 0x2751eeec, 0x037b4a7f, 0x3b4c1059, 0x08f37674,
0x2ae906e1, 0x18a88a6a, 0x00008786,
],
[
0x34bc21d1, 0x0cce474d, 0x15048bf4, 0x1d0bb409, 0x021cda16,
0x20de76c3, 0x34c59063, 0x04ede20e, 0x00003ed1, 0x282a3740,
0x0be3bbf3, 0x29889dae, 0x03413697, 0x34c68a09, 0x210ebe93,
0x0c8a224c, 0x0826b331, 0x00009099,
],
[
0x0624e3c4, 0x140317ba, 0x2f82c99d, 0x260c0a2c, 0x25d55179,
0x194dcc83, 0x3d95e462, 0x356f6a05, 0x0000741d, 0x0d4481d3,
0x2657fc8b, 0x1ba5ca71, 0x3ae44b0d, 0x07b1548e, 0x0e0d5522,
0x05fdc567, 0x2d1aa70e, 0x00000770,
],
[
0x06072c01, 0x23857675, 0x1ead58a9, 0x0b8a12d9, 0x1ee2fc79,
0x0177cb61, 0x0495a618, 0x20deb82b, 0x0000177c, 0x2fc7bfd8,
0x310eef8b, 0x1fb4df39, 0x3b8530e8, 0x0f4e7226, 0x0246b6d0,
0x2a558a24, 0x163353af, 0x000063bb,
],
[
0x24d2920b, 0x1c249dcc, 0x2069c5e5, 0x09ab2f9e, 0x36df3cf1,
0x1991fd0c, 0x062b97a7, 0x1e80070e, 0x000054e7, 0x20d0b375,
0x2e9f20bd, 0x35090081, 0x1c7a9ddc, 0x22e7c371, 0x087e3016,
0x03175421, 0x3c6eca7d, 0x0000f599,
],
[
0x259b9d5f, 0x0d9a318f, 0x23a0ef16, 0x00ebe4b7, 0x088265ae,
0x2cde2666, 0x2bae7adf, 0x1371a5c6, 0x0000f045, 0x0d034f36,
0x1f967378, 0x1b5fa3f4, 0x0ec8739d, 0x1643e62a, 0x1653947e,
0x22d1f4e6, 0x0fb8d64b, 0x0000b5b9,
],
];
// Lookup one of the Gwin[] values, by index. This is constant-time.
fn lookup_gwin(t: *p256_jacobian, idx: u32) void = {
let xy: [18]u32 = [0...];
let k: u32 = 0;
let u: size = 0;
for (let k = 0u32; k < 15; k += 1) {
let m = -equ32(idx, k + 1);
for (let u = 0z; u < 18; u += 1) {
xy[u] |= m & gwin[k][u];
};
};
t.x[..] = xy[..9];
t.y[..] = xy[9..];
t.z[..] = [0...];
t.z[0] = 1;
};
// Multiply the generator by an integer. The integer is assumed non-zero
// and lower than the curve order.
fn p256_mulgen(p :*p256_jacobian, x: []u8) void = {
// qz is a flag that is initially 1, and remains equal to 1
// as long as the point is the point at infinity.
//
// We use a 4-bit window to handle multiplier bits by groups
// of 4. The precomputed window is constant static data, with
// points in affine coordinates; we use a constant-time lookup.
let q = p256_jacobian { ... };
let qz: u32 = 1;
let xpos: size = 0;
for (let i = len(x); i > 0; i -= 1) {
let bx = x[xpos]: u32;
xpos += 1;
for (let k = 0z; k < 2; k += 1) {
let bits: u32 = 0;
let bnz: u32 = 0;
let t = p256_jacobian { ... };
let u = p256_jacobian { ... };
p256_double(&q);
p256_double(&q);
p256_double(&q);
p256_double(&q);
bits = (bx >> 4) & 0x0f;
bnz = nequ32(bits, 0);
lookup_gwin(&t, bits);
u = q;
p256_add_mixed(&u, &t);
jaccopy(bnz & qz, &q, &t);
jaccopy(bnz & ~qz, &q, &u);
qz &= ~bnz;
bx <<= 4;
};
};
*p = q;
};
const P256_G: [_]u8 = [
0x04, 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6,
0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33,
0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42,
0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e,
0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40,
0x68, 0x37, 0xbf, 0x51, 0xf5
];
const P256_N: [_]u8 = [
0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xbc, 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84,
0xf3, 0xb9, 0xca, 0xc2, 0xfc, 0x63, 0x25, 0x51
];
fn api256_mul(g: []u8, x: []u8) u32 = {
if (len(g) != 65) {
return 0;
};
let p = p256_jacobian { ... };
let r = p256_decode(&p, g);
p256_mul(&p, x);
p256_to_affine(&p);
p256_encode(g, &p);
return r;
};
fn api256_mulgen(r: []u8, x: []u8) size = {
let p = p256_jacobian { ... };
p256_mulgen(&p, x);
p256_to_affine(&p);
p256_encode(r[..65], &p);
return 65;
};
fn api256_muladd(a: []u8, b: []u8, x: []u8, y: []u8) u32 ={
let p = p256_jacobian { ... };
let q = p256_jacobian { ... };
if (len(a) != 65) {
return 0;
};
let r = p256_decode(&p, a);
p256_mul(&p, x);
if (len(b) == 0) {
p256_mulgen(&q, y);
} else {
r &= p256_decode(&q, b);
p256_mul(&q, y);
};
// The final addition may fail in case both points are equal.
let t = p256_add(&p, &q);
reduce_final_f256(p.z);
let z: u32 = 0;
for (let i = 0z; i < 9; i += 1) {
z |= p.z[i];
};
z = equ32(z, 0);
p256_double(&q);
// If z is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
// have the following:
//
// z = 0, t = 0 return P (normal addition)
// z = 0, t = 1 return P (normal addition)
// z = 1, t = 0 return Q (a 'double' case)
// z = 1, t = 1 report an error (P+Q = 0)
jaccopy(z & ~t, &p, &q);
p256_to_affine(&p);
p256_encode(a, &p);
r &= ~(z & t);
return r;
};
fn api256_order() const []u8 = P256_N;
fn api256_generator() const []u8 = P256_G;
const _p256: curve = curve {
pointsz = P256_POINTSZ,
order = &api256_order,
generator = &api256_generator,
mul = &api256_mul,
mulgen = &api256_mulgen,
muladd = &api256_muladd,
keygen = &mask_keygen,
};
// Size of a [[p256]] point in bytes.
export def P256_POINTSZ = 65;
// Size of a [[p256]] scalar in bytes.
export def P256_SCALARSZ = 32;
// A [[curve]] implementation of P-256, also known as secp256r1 or prime256v1.
//
// The point size is defined by [[P256_POINTSZ]] and the scalar size is defined
// by [[P256_SCALARSZ]. See the documentation of [[curve]] on how to encode
// such values.
export const p256: *curve = &_p256;
|