File: core.ha

package info (click to toggle)
hare 0.25.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,948 kB
  • sloc: asm: 1,264; makefile: 123; sh: 114; lisp: 101
file content (232 lines) | stat: -rw-r--r-- 7,704 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>

// The following code was initially ported from BearSSL.
//
// Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
use bytes;
use crypto::bigint::*;
use crypto::math::{divu32};
use errors;
use types;

// Maximum factor size of a key of [[BITSZ]].
def MAXFACTOR: size = ((BITSZ + 64) >> 1);

// Required buf size for the [[pubexp]] operation.
def PUBEXP_BUFSZ: size = size(word) * (1 + (4 * (2
		+ ((BITSZ + WORD_BITSZ - 1) / WORD_BITSZ))));

// Requried buf size for the [[privexp]] operation.
def PRIVEXP_BUFSZ: size = size(word) * (1 + (8 * (2
		+ ((MAXFACTOR + WORD_BITSZ - 1) / WORD_BITSZ))));

// Performs the modular exponentiation of 'x' with the public exponent of 'pub'.
// 'x' is modified in place. 'x' must be the same length as the actual length
// of 'pub.n'.
//
// For the size of 'buf' see [[PUBEXP_BUFSZ]]. If the buffer is not large
// enough, [[errors::overflow]] will be returned. In case of 'x' being not of
// required length or if 'x' is not modulo 'pub.n' [[errors::invalid]] is
// returned and 'x' will be zeroed.
fn pubexp(pub: *pubparams, x: []u8, buf: []u8) (void | error) = {
	// supported key length leaks. But that is not a problem.
	const wbuflen = len(buf) / size(word);
	let wbuf: []word = (buf: *[*]word)[..wbuflen];
	let n = pub.n;

	// get the maximal allowed key size for given buffer. Reverse of the
	// [[PUBEXP_BUFSZ]] equation.
	const maxkeybits = (((wbuflen - 1) / 4) - 2) * WORD_BITSZ;

	if (len(n) == 0 || len(n) > (maxkeybits >> 3)) {
		return errors::overflow;
	};

	if (len(x) != len(n)) {
		bytes::zero(x);
		return errors::invalid;
	};

	// add word size - 1 to ceil required words in the division that follows
	const maxnbitlen = (len(n) << 3) + WORD_BITSZ: size - 1;
	assert(maxnbitlen <= types::U32_MAX);
	let bwordlen = 1 + divu32(0, maxnbitlen: u32, WORD_BITSZ).0;

	// make it even
	bwordlen += bwordlen & 1;

	let nenc = wbuf[..bwordlen];
	let xenc = wbuf[bwordlen..2 * bwordlen];
	let t = wbuf[2 * bwordlen..];

	// From now on, buf will be indirectly used via slices borrowed from
	// wbuf. Therefore make sure it gets cleared in the end.
	defer bytes::zero(buf);

	encode(nenc, n);
	const n0i = ninv(nenc[1]);

	// if m is odd, n0i is also.
	let result: word = n0i & 1;
	result &= encodemod(xenc, x, nenc);

	modpow(xenc, pub.e, nenc, n0i, t);

	decode(x, xenc);

	if (result == 0: word) {
		bytes::zero(x);
		return errors::invalid;
	};
};

// Performs modular exponentiation of 'x' with the private exponent of 'priv'.
// 'x' is modified in place. 'x' must be the same length as the actual length
// of the modulus n (see [[privkey_nsize]]).
//
// For size of 'buf' see [[PRIVEXP_BUFSZ]]. If the buffer is not large enough
// [[errors::overflow]] will be returned. In case of an invalid size of 'x' or
// an invalid key, [[errors::invalid]] will be returned and 'x' will be zeroed.
fn privexp(priv: *privparams, x: []u8, buf: []u8) (void | error) = {
	// supported key length leaks. But that is not a problem.
	const wbuflen = len(buf) / size(word);
	let wbuf: []word = (buf: *[*]word)[..wbuflen];

	let p = priv.p;
	let q = priv.q;

	const maxflen = if (len(p) > len(q)) len(p) else len(q);

	// add word size - 1 to ceil required words in the division that follows
	const maxfbitlen = (maxflen << 3) + WORD_BITSZ: size - 1;
	assert(maxfbitlen <= types::U32_MAX);
	let bwordlen = 1 + divu32(0, maxfbitlen: u32, WORD_BITSZ).0;

	// make it even
	bwordlen += bwordlen & 1;

	// We need at least 6 big integers for the following calculations
	if (6 * bwordlen > len(wbuf)) {
		return errors::overflow;
	};

	// From now on, buf will be indirectly used via wbuf. Therefore make
	// sure it gets cleared in the end.
	defer bytes::zero(buf);

	let mq = wbuf[..bwordlen];
	encode(mq, q);

	let t1 = wbuf[bwordlen..2 * bwordlen];
	encode(t1, p);

	// compute modulus n
	let t2 = wbuf[2 * bwordlen..4 * bwordlen];
	zero(t2, mq[0]);
	mulacc(t2, mq, t1);

	// ceiled modulus length in bytes
	const nlen = (priv.nbitlen + 7) >> 3;
	if(len(x) != nlen) {
		bytes::zero(x);
		return errors::invalid;
	};

	let t3 = wbuf[4 * bwordlen..6 * bwordlen];
	let t3 = (t3: *[*]u8)[..nlen];
	decode(t3, t2);
	let r: u32 = 0;

	// Check if x is mod n.
	//
	// We encode the modulus into bytes, to perform the comparison with
	// bytes. We know that the product length, in bytes, is exactly nlen.
	//
	// The comparison actually computes the carry when subtracting the
	// modulus from the source value; that carry must be 1 for a value in
	// the correct range. We keep it in r, which is our accumulator for the
	// error code.
	for (let u = nlen; u > 0) {
		u -= 1;
		r = ((x[u] - (t3[u] + r)) >> 8) & 1;
	};

	// Move the decoded p to another temporary buffer.
	let mp = wbuf[2 * bwordlen..3 * bwordlen];
	mp[..] = t1[..];

	// Compute s2 = x^dq mod q.
	const q0i = ninv(mq[1]);
	let s2 = wbuf[bwordlen..bwordlen * 3];
	encodereduce(s2, x, mq);
	r &= modpow(s2, priv.dq, mq, q0i, wbuf[3 * bwordlen..]);

	// Compute s1 = x^dp mod p.
	const p0i = ninv(mp[1]);
	let s1 = wbuf[bwordlen * 3..];
	encodereduce(s1, x, mp);
	r &= modpow(s1, priv.dp, mp, p0i, wbuf[4 * bwordlen..]);

	// Compute:
	//   h = (s1 - s2)*(1/q) mod p
	// s1 is an integer modulo p, but s2 is modulo q. PKCS#1 is
	// unclear about whether p may be lower than q (some existing,
	// widely deployed implementations of RSA don't tolerate p < q),
	// but we want to support that occurrence, so we need to use the
	// reduction function.
	//
	// Since we use br_i31_decode_reduce() for iq (purportedly, the
	// inverse of q modulo p), we also tolerate improperly large
	// values for this parameter.
	let t1 = wbuf[4 * bwordlen..5 * bwordlen];
	let t2 = wbuf[5 * bwordlen..];

	reduce(t2, s2, mp);
	add(s1, mp, sub(s1, t2, 1));
	tomonty(s1, mp);
	encodereduce(t1, priv.iq, mp);
	montymul(t2, s1, t1, mp, p0i);

	// h is now in t2. We compute the final result:
	//   s = s2 + q*h
	// All these operations are non-modular.
	//
	// We need mq, s2 and t2. We use the t3 buffer as destination.
	// The buffers mp, s1 and t1 are no longer needed, so we can
	// reuse them for t3. Moreover, the first step of the computation
	// is to copy s2 into t3, after which s2 is not needed. Right
	// now, mq is in slot 0, s2 is in slot 1, and t2 is in slot 5.
	// Therefore, we have ample room for t3 by simply using s2.
	let t3 = s2;
	mulacc(t3, mq, t2);

	// Encode the result. Since we already checked the value of xlen,
	// we can just use it right away.
	decode(x, t3);

	if ((p0i & q0i & r) != 1) {
		bytes::zero(x);
		return errors::invalid;
	};
};