1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>
// Defines flags characterizing types of floating point exceptions,
// Each of the flags is only defined when the target platform supports handling
// the corresponding exception. Flags NONE and ALL are always
// defined and correspond to a bitwise OR of none and all defined flags
// respectively. Platforms may define additional nonstandard flags.
//
// Examples:
// math::raiseexcept(math::fexcept::UNDERFLOW); // raise UNDERFLOW
// math::clearexcept(math::fexcept::ALL); // clear all exceptions
//
// // e will be math::fexcept::INVALID
// math::clearexcept(math::fexcept::ALL);
// let a = 0.0/0.0;
// let e = math::testexcept(math::fexcept::INVALID | math::fexcept::INEXACT);
export type fexcept = enum uint {
// No flags set
NONE = 0,
// Occurs when there is no well-defined result of an operation, such as
// with 0/0 or sqrt(-1)
INVALID = 1 << 0,
// Occurs when an operation on finite numbers produces infinity
DIVBYZERO = 1 << 1,
// Occurs when the result of an operation is much bigger (by
// absolute value) than the biggest representable finite number
OVERFLOW = 1 << 2,
// Occurs when the result of an operation is too small (by
// absolute value) to be stored as a normalized number
UNDERFLOW = 1 << 3,
// Occurs when the result of an operation is rounded to a
// value that differs from the infinite precision result.
INEXACT = 1 << 4,
// Combination of all flags
ALL = INVALID | DIVBYZERO | OVERFLOW | UNDERFLOW | INEXACT,
};
// Defines values characterizing different floating point rounding behaviors.
// Each of the values is only definined when the target platform supports the
// corresponding rounding mode.
export type fround = enum uint {
// Round towards nearest integer, with ties rounding to even
TONEAREST = 0,
// Round towards negative infinity
DOWNWARD = 0x800000,
// Round towards positive infinity
UPWARD = 0x400000,
// Round towards zero
TOWARDZERO = 0xC00000,
};
@test fn fexcept() void = {
assert(testexcept(fexcept::ALL) == fexcept::NONE);
assert(testexcept(fexcept::NONE) == fexcept::NONE);
raiseexcept(fexcept::INEXACT | fexcept::DIVBYZERO);
assert(testexcept(fexcept::INEXACT) == fexcept::INEXACT);
assert(testexcept(fexcept::DIVBYZERO) == fexcept::DIVBYZERO);
assert(testexcept(fexcept::UNDERFLOW) == fexcept::NONE);
assert(testexcept(fexcept::DIVBYZERO | fexcept::INEXACT)
== fexcept::DIVBYZERO | fexcept::INEXACT);
assert(testexcept(fexcept::DIVBYZERO | fexcept::INEXACT | fexcept::INVALID)
== fexcept::DIVBYZERO | fexcept::INEXACT);
clearexcept(fexcept::INEXACT);
assert(testexcept(fexcept::DIVBYZERO | fexcept::INEXACT) == fexcept::DIVBYZERO);
raiseexcept(fexcept::ALL);
assert(testexcept(fexcept::ALL) == fexcept::ALL);
assert(testexcept(fexcept::NONE) == fexcept::NONE);
clearexcept(fexcept::ALL);
assert(testexcept(fexcept::ALL) == fexcept::NONE);
assert(testexcept(fexcept::NONE) == fexcept::NONE);
};
@test fn fround() void = {
// from musl's testsuite
let f = &f64frombits;
assert(getround() == fround::TONEAREST);
assert(isnan(nearbyintf64(f(0x7ff8000000000000))));
assert(nearbyintf64(f(0x7ff0000000000000)) == INF);
assert(nearbyintf64(f(0xfff0000000000000)) == -INF);
assert(nearbyintf64(f(0x0)) == f(0x0));
assert(nearbyintf64(f(0x8000000000000000)) == f(0x8000000000000000));
assert(nearbyintf64(f(0x3ff0000000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbff0000000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x3fe0000000000000)) == f(0x0));
assert(nearbyintf64(f(0xbfe0000000000000)) == f(0x8000000000000000));
assert(nearbyintf64(f(0x3ff0001000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbff0001000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x3feffff000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbfeffff000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x39b0000000000000)) == f(0x0));
assert(nearbyintf64(f(0xb9b0000000000000)) == f(0x8000000000000000));
setround(fround::DOWNWARD);
assert(getround() == fround::DOWNWARD);
assert(isnan(nearbyintf64(f(0x7ff8000000000000))));
assert(nearbyintf64(f(0x7ff0000000000000)) == INF);
assert(nearbyintf64(f(0xfff0000000000000)) == -INF);
assert(nearbyintf64(f(0x0)) == f(0x0));
assert(nearbyintf64(f(0x8000000000000000)) == f(0x8000000000000000));
assert(nearbyintf64(f(0x3ff0000000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbff0000000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x3fe0000000000000)) == f(0x0));
assert(nearbyintf64(f(0xbfe0000000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x3ff0001000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbff0001000000000)) == f(0xc000000000000000));
assert(nearbyintf64(f(0x3feffff000000000)) == f(0x0));
assert(nearbyintf64(f(0xbfeffff000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x39b0000000000000)) == f(0x0));
assert(nearbyintf64(f(0xb9b0000000000000)) == f(0xbff0000000000000));
setround(fround::UPWARD);
assert(getround() == fround::UPWARD);
assert(isnan(nearbyintf64(f(0x7ff8000000000000))));
assert(nearbyintf64(f(0x7ff0000000000000)) == INF);
assert(nearbyintf64(f(0xfff0000000000000)) == -INF);
assert(nearbyintf64(f(0x0)) == f(0x0));
assert(nearbyintf64(f(0x8000000000000000)) == f(0x8000000000000000));
assert(nearbyintf64(f(0x3ff0000000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbff0000000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x3fe0000000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbfe0000000000000)) == f(0x8000000000000000));
assert(nearbyintf64(f(0x3ff0001000000000)) == f(0x4000000000000000));
assert(nearbyintf64(f(0xbff0001000000000)) == f(0xbff0000000000000));
assert(nearbyintf64(f(0x3feffff000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xbfeffff000000000)) == f(0x8000000000000000));
assert(nearbyintf64(f(0x39b0000000000000)) == f(0x3ff0000000000000));
assert(nearbyintf64(f(0xb9b0000000000000)) == f(0x8000000000000000));
let f = &f32frombits;
setround(fround::TONEAREST);
assert(getround() == fround::TONEAREST);
assert(isnan(nearbyintf32(f(0x7fc00000))));
assert(nearbyintf32(f(0x7f800000)) == INF);
assert(nearbyintf32(f(0xff800000)) == -INF);
assert(nearbyintf32(f(0x0)) == f(0x0));
assert(nearbyintf32(f(0x80000000)) == f(0x80000000));
assert(nearbyintf32(f(0x3f800000)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf800000)) == f(0xbf800000));
assert(nearbyintf32(f(0x3f000000)) == f(0x0));
assert(nearbyintf32(f(0xbf000000)) == f(0x80000000));
assert(nearbyintf32(f(0x3f800080)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf800080)) == f(0xbf800000));
assert(nearbyintf32(f(0x3f7fff80)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf7fff80)) == f(0xbf800000));
assert(nearbyintf32(f(0xd800000)) == f(0x0));
assert(nearbyintf32(f(0x8d800000)) == f(0x80000000));
setround(fround::DOWNWARD);
assert(getround() == fround::DOWNWARD);
assert(isnan(nearbyintf32(f(0x7fc00000))));
assert(nearbyintf32(f(0x7f800000)) == INF);
assert(nearbyintf32(f(0xff800000)) == -INF);
assert(nearbyintf32(f(0x0)) == f(0x0));
assert(nearbyintf32(f(0x80000000)) == f(0x80000000));
assert(nearbyintf32(f(0x3f800000)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf800000)) == f(0xbf800000));
assert(nearbyintf32(f(0x3f000000)) == f(0x0));
assert(nearbyintf32(f(0xbf000000)) == f(0xbf800000));
assert(nearbyintf32(f(0x3f800080)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf800080)) == f(0xc0000000));
assert(nearbyintf32(f(0x3f7fff80)) == f(0x0));
assert(nearbyintf32(f(0xbf7fff80)) == f(0xbf800000));
assert(nearbyintf32(f(0xd800000)) == f(0x0));
assert(nearbyintf32(f(0x8d800000)) == f(0xbf800000));
setround(fround::UPWARD);
assert(getround() == fround::UPWARD);
assert(isnan(nearbyintf32(f(0x7fc00000))));
assert(nearbyintf32(f(0x7f800000)) == INF);
assert(nearbyintf32(f(0xff800000)) == -INF);
assert(nearbyintf32(f(0x0)) == f(0x0));
assert(nearbyintf32(f(0x80000000)) == f(0x80000000));
assert(nearbyintf32(f(0x3f800000)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf800000)) == f(0xbf800000));
assert(nearbyintf32(f(0x3f000000)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf000000)) == f(0x80000000));
assert(nearbyintf32(f(0x3f800080)) == f(0x40000000));
assert(nearbyintf32(f(0xbf800080)) == f(0xbf800000));
assert(nearbyintf32(f(0x3f7fff80)) == f(0x3f800000));
assert(nearbyintf32(f(0xbf7fff80)) == f(0x80000000));
assert(nearbyintf32(f(0xd800000)) == f(0x3f800000));
assert(nearbyintf32(f(0x8d800000)) == f(0x80000000));
};
|