File: math.ha

package info (click to toggle)
hare 0.25.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,948 kB
  • sloc: asm: 1,264; makefile: 123; sh: 114; lisp: 101
file content (836 lines) | stat: -rw-r--r-- 26,382 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>

// Sections of the code below, in particular log() and exp(), are based on Go's
// implementation, which is, in turn, based on FreeBSD's. The original C code,
// as well as the respective comments and constants are from
// /usr/src/lib/msun/src/{e_log,e_exp}.c.
//
// The FreeBSD copyright notice:
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// The Go copyright notice:
// ====================================================
// Copyright (c) 2009 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//    * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//    * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//    * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ====================================================

use types;

// The standard tolerance used by [[isclosef32]] and [[isclosef64]], which is
// just an arbitrary way to measure whether two floating-point numbers are
// "sufficiently" close to each other.
export def STANDARD_TOL = 1e-14;

// Returns whether x and y are within tol of each other.
export fn isclosef64(x: f64, y: f64, tol: f64 = STANDARD_TOL) bool = {
	if (isnan(x) || isnan(y) || isnan(tol)) {
		return false;
	};
	return absf64(x - y) < tol;
};

// Returns whether x and y are within tol of each other.
export fn isclosef32(x: f32, y: f32, tol: f32 = STANDARD_TOL) bool = {
	if (isnan(x) || isnan(y) || isnan(tol)) {
		return false;
	};
	return absf32(x - y) < tol;
};

// e - https://oeis.org/A001113
export def E: f64 = 2.71828182845904523536028747135266249775724709369995957496696763;
// pi - https://oeis.org/A000796
export def PI: f64 = 3.14159265358979323846264338327950288419716939937510582097494459;
// tau - https://oeis.org/A019692
export def TAU: f64 = 6.2831853071795864769252867665590057683943387987502116419498892;
// phi - https://oeis.org/A001622
export def PHI: f64 = 1.61803398874989484820458683436563811772030917980576286213544862;
// sqrt(2) - https://oeis.org/A002193
export def SQRT_2: f64 = 1.41421356237309504880168872420969807856967187537694807317667974;
// sqrt(e) - https://oeis.org/A019774
export def SQRT_E: f64 = 1.64872127070012814684865078781416357165377610071014801157507931;
// sqrt(pi) - https://oeis.org/A002161
export def SQRT_PI: f64 = 1.77245385090551602729816748334114518279754945612238712821380779;
// sqrt(phi) - https://oeis.org/A139339
export def SQRT_PHI: f64 = 1.27201964951406896425242246173749149171560804184009624861664038;
// ln(2) - https://oeis.org/A002162
export def LN_2: f64 = 0.693147180559945309417232121458176568075500134360255254120680009;
// ln(2) - https://oeis.org/A002162
export def LN2_HI: f64 = 6.93147180369123816490e-01;
// ln(2) - https://oeis.org/A002162
export def LN2_LO: f64 = 1.90821492927058770002e-10;
// log_{2}(e)
export def LOG2_E: f64 = 1f64 / LN_2;
// ln(10) - https://oeis.org/A002392
export def LN_10: f64 = 2.30258509299404568401799145468436420760110148862877297603332790;
// log_{10}(e)
export def LOG10_E: f64 = 1f64 / LN_10;

// __ieee754_log(x)
// Return the logarithm of x
//
// Method :
//   1. Argument Reduction: find k and f such that
//			x = 2**k * (1+f),
//	   where  sqrt(2)/2 < 1+f < sqrt(2) .
//
//   2. Approximation of log(1+f).
//	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
//		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
//	     	 = 2s + s*R
//      We use a special Reme algorithm on [0,0.1716] to generate
//	a polynomial of degree 14 to approximate R.  The maximum error
//	of this polynomial approximation is bounded by 2**-58.45. In
//	other words,
//		        2      4      6      8      10      12      14
//	    R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s  +L6*s  +L7*s
//	(the values of L1 to L7 are listed in the program) and
//	    |      2          14          |     -58.45
//	    | L1*s +...+L7*s    -  R(z) | <= 2
//	    |                             |
//	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
//	In order to guarantee error in log below 1ulp, we compute log by
//		log(1+f) = f - s*(f - R)		(if f is not too large)
//		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
//
//	3. Finally,  log(x) = k*Ln2 + log(1+f).
//			    = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
//	   Here Ln2 is split into two floating point number:
//			Ln2_hi + Ln2_lo,
//	   where n*Ln2_hi is always exact for |n| < 2000.
//
// Special cases:
//	log(x) is NaN with signal if x < 0 (including -INF) ;
//	log(+INF) is +INF; log(0) is -INF with signal;
//	log(NaN) is that NaN with no signal.
//
// Accuracy:
//	according to an error analysis, the error is always less than
//	1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.

// Returns the natural logarithm of x.
export fn logf64(x: f64) f64 = {
	const L1 = 6.666666666666735130e-01; // 3fe55555 55555593
	const L2 = 3.999999999940941908e-01; // 3fd99999 9997fa04
	const L3 = 2.857142874366239149e-01; // 3fd24924 94229359
	const L4 = 2.222219843214978396e-01; // 3fcc71c5 1d8e78af
	const L5 = 1.818357216161805012e-01; // 3fc74664 96cb03de
	const L6 = 1.531383769920937332e-01; // 3fc39a09 d078c69f
	const L7 = 1.479819860511658591e-01; // 3fc2f112 df3e5244

	// special cases
	if (isnan(x) || x == INF) {
		return x;
	} else if (x < 0f64) {
		return NAN;
	} else if (x == 0f64) {
		return -INF;
	};

	// Reduce
	const (f1, ki) = frexpf64(x);
	if (f1 < (SQRT_2 / 2f64)) {
		f1 *= 2f64;
		ki -= 1i64;
	};
	let f = f1 - 1f64;
	let k = (ki: f64);

	// Compute
	const s = f / (2f64 + f);
	const s2 = s * s;
	const s4 = s2 * s2;
	const t1 = s2 * (L1 + s4 * (L3 + s4 * (L5 + s4 * L7)));
	const t2 = s4 * (L2 + s4 * (L4 + s4 * L6));
	const R = t1 + t2;
	const hfsq = 0.5f64 * f * f;
	return k * LN2_HI - ((hfsq - (s * (hfsq + R) + k * LN2_LO)) - f);
};

// Returns the decimal logarithm of x.
export fn log10f64(x: f64) f64 = {
	return logf64(x) * (1f64 / LN_10);
};

// Returns the binary logarithm of x.
export fn log2f64(x: f64) f64 = {
	const (frac, exp) = frexpf64(x);
	// Make sure exact powers of two give an exact answer.
	// Don't depend on log(0.5) * (1 / LN_2) + exp being exactly exp - 1.
	if (frac == 0.5f64) {
		return ((exp - 1): f64);
	};
	return logf64(frac) * (1f64 / LN_2) + (exp: f64);
};

// double log1p(double x)
//
// Method :
//   1. Argument Reduction: find k and f such that
//                      1+x = 2**k * (1+f),
//         where  sqrt(2)/2 < 1+f < sqrt(2) .
//
//      Note. If k=0, then f=x is exact. However, if k!=0, then f
//      may not be representable exactly. In that case, a correction
//      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
//      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
//      and add back the correction term c/u.
//      (Note: when x > 2**53, one can simply return log(x))
//
//   2. Approximation of log1p(f).
//      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
//               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
//               = 2s + s*R
//      We use a special Reme algorithm on [0,0.1716] to generate
//      a polynomial of degree 14 to approximate R The maximum error
//      of this polynomial approximation is bounded by 2**-58.45. In
//      other words,
//                      2      4      6      8      10      12      14
//          R(z) ~ LP1*s +LP2*s +LP3*s +LP4*s +LP5*s  +LP6*s  +LP7*s
//      (the values of LP1 to LP7 are listed in the program)
//      and
//          |      2          14          |     -58.45
//          | LP1*s +...+LP7*s    -  R(z) | <= 2
//          |                             |
//      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
//      In order to guarantee error in log below 1ulp, we compute log
//      by
//              log1p(f) = f - (hfsq - s*(hfsq+R)).
//
//   3. Finally, log1p(x) = k*ln2 + log1p(f).
//                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
//      Here ln2 is split into two floating point number:
//                   ln2_hi + ln2_lo,
//      where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
//      log1p(x) is NaN with signal if x < -1 (including -INF) ;
//      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
//      log1p(NaN) is that NaN with no signal.
//
// Accuracy:
//      according to an error analysis, the error is always less than
//      1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Note: Assuming log() return accurate answer, the following
//       algorithm can be used to compute log1p(x) to within a few ULP:
//
//              u = 1+x;
//              if(u==1.0) return x ; else
//                         return log(u)*(x/(u-1.0));
//
//       See HP-15C Advanced Functions Handbook, p.193.

// Returns the natural logarithm of 1 plus its argument x.
// It is more accurate than log(1 + x) when x is near zero.
export fn log1pf64(x: f64) f64 = {
	// sqrt(2) - 1
	const SQRT2M1 = 4.142135623730950488017e-01; // 0x3fda827999fcef34
	// sqrt(2) / 2 - 1
	const SQRT2HALFM1 = -2.928932188134524755992e-01; // 0xbfd2bec333018866
	const SMALL = 1f64 / ((1i64 << 29): f64); // 2**-29
	const TINY = 1f64 / ((1i64 << 54): f64); // 2**-54
	const TWO53 = ((1i64 << 53): f64); // 2**53
	const LN2HI = 6.93147180369123816490e-01; // 3fe62e42fee00000
	const LN2LO = 1.90821492927058770002e-10; // 3dea39ef35793c76
	const LP1 = 6.666666666666735130e-01; // 3fe5555555555593
	const LP2 = 3.999999999940941908e-01; // 3fd999999997fa04
	const LP3 = 2.857142874366239149e-01; // 3fd2492494229359
	const LP4 = 2.222219843214978396e-01; // 3fcc71c51d8e78af
	const LP5 = 1.818357216161805012e-01; // 3fc7466496cb03de
	const LP6 = 1.531383769920937332e-01; // 3fc39a09d078c69f
	const LP7 = 1.479819860511658591e-01; // 3fc2f112df3e5244

	if (x < -1f64 || isnan(x)) {
		return NAN;
	} else if (x == -1f64) {
		return -INF;
	} else if (x == INF) {
		return INF;
	};

	const absx = absf64(x);

	let f = 0f64;
	let iu = 0u64;
	let k = 1i64;
	if (absx < SQRT2M1) { //  |x| < Sqrt(2)-1
		if (absx < SMALL) { // |x| < 2**-29
			if (absx < TINY) { // |x| < 2**-54
				return x;
			};
			return x - (x * x * 0.5f64);
		};
		if (x > SQRT2HALFM1) { // Sqrt(2)/2-1 < x
			// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
			k = 0;
			f = x;
			iu = 1;
		};
	};
	let c = 0f64;
	if (k != 0) {
		let u = 0f64;
		if (absx < TWO53) { // 1<<53
			u = 1.0 + x;
			iu = f64bits(u);
			k = (((iu >> 52) - 1023): i64);
			// Correction term
			if (k > 0) {
				c = 1f64 - (u - x);
			} else {
				c = x - (u - 1f64);
			};
			c /= u;
		} else {
			u = x;
			iu = f64bits(u);
			k = (((iu >> 52) - 1023): i64);
			c = 0f64;
		};
		iu &= 0x000fffffffffffff;
		if (iu < 0x0006a09e667f3bcd) { // Mantissa of Sqrt(2)
			// Normalize u
			u = f64frombits(iu | 0x3ff0000000000000);
		} else {
			k += 1;
			// Normalize u/2
			u = f64frombits(iu | 0x3fe0000000000000);
			iu = (0x0010000000000000 - iu) >> 2;
		};
		f = u - 1f64; // Sqrt(2)/2 < u < Sqrt(2)
	};
	const hfsq = 0.5 * f * f;
	let s = 0f64;
	let R = 0f64;
	let z = 0f64;
	if (iu == 0) { // |f| < 2**-20
		if (f == 0f64) {
			if (k == 0) {
				return 0f64;
			};
			c += (k: f64) * LN2LO;
			return (k: f64) * LN2HI + c;
		};
		R = hfsq * (1.0 - 0.66666666666666666 * f); // Avoid division
		if (k == 0) {
			return f - R;
		};
		return (k: f64) * LN2HI - ((R - ((k: f64) * LN2LO + c)) - f);
	};
	s = f / (2f64 + f);
	z = s * s;
	R = z * (LP1 +
		z * (LP2 +
		z * (LP3 +
		z * (LP4 +
		z * (LP5 +
		z * (LP6 +
		z * LP7))))));
	if (k == 0) {
		return f - (hfsq - s * (hfsq + R));
	};
	return (k: f64) * LN2HI -
		((hfsq - (s * (hfsq + R) + ((k: f64) * LN2LO + c))) - f);
};

// exp(x)
// Returns the exponential of x.
//
// Method
//   1. Argument reduction:
//      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
//      Given x, find r and integer k such that
//
//               x = k*ln2 + r,  |r| <= 0.5*ln2.
//
//      Here r will be represented as r = hi-lo for better
//      accuracy.
//
//   2. Approximation of exp(r) by a special rational function on
//      the interval [0,0.34658]:
//      Write
//          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
//      We use a special Remez algorithm on [0,0.34658] to generate
//      a polynomial of degree 5 to approximate R. The maximum error
//      of this polynomial approximation is bounded by 2**-59. In
//      other words,
//          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
//      (where z=r*r, and the values of P1 to P5 are listed below)
//      and
//          |                  5          |     -59
//          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
//          |                             |
//      The computation of exp(r) thus becomes
//                             2*r
//              exp(r) = 1 + -------
//                            R - r
//                                 r*R1(r)
//                     = 1 + r + ----------- (for better accuracy)
//                                2 - R1(r)
//      where
//                               2       4             10
//              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
//
//   3. Scale back to obtain exp(x):
//      From step 1, we have
//         exp(x) = 2**k * exp(r)
//
// Special cases:
//      exp(INF) is INF, exp(NaN) is NaN;
//      exp(-INF) is 0, and
//      for finite argument, only exp(0)=1 is exact.
//
// Accuracy:
//      according to an error analysis, the error is always less than
//      1 ulp (unit in the last place).
//
// Misc. info.
//      For IEEE double
//          if x >  7.09782712893383973096e+02 then exp(x) overflow
//          if x < -7.45133219101941108420e+02 then exp(x) underflow
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.

// Returns e^r * 2^k where r = hi - lo and |r| <= (ln(2) / 2).
export fn expmultif64(hi: f64, lo: f64, k: i64) f64 = {
	const P1 = 1.66666666666666657415e-01; // 0x3fc55555; 0x55555555
	const P2 = -2.77777777770155933842e-03; // 0xbf66c16c; 0X16bebd9n
	const P3 = 6.61375632143793436117e-05; // 0x3f11566a; 0Xaf25de2c
	const P4 = -1.65339022054652515390e-06; // 0xbebbbd41; 0Xc5d26bf1
	const P5 = 4.13813679705723846039e-08; // 0x3e663769; 0X72bea4d0

	let r = hi - lo;
	let t = r * r;
	let c = r - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
	const y = 1f64 - ((lo - (r * c) / (2f64 - c)) - hi);
	return ldexpf64(y, k);
};

// Returns e^x.
export fn expf64(x: f64) f64 = {
	const overflow = 7.09782712893383973096e+02;
	const underflow = -7.45133219101941108420e+02;
	const near_zero = 1f64 / ((1i64 << 28i64): f64);

	if (isnan(x) || x == INF) {
		return x;
	} else if (x == -INF) {
		return 0f64;
	} else if (x > overflow) {
		return INF;
	} else if (x < underflow) {
		return 0f64;
	} else if (-near_zero < x && x < near_zero) {
		return 1f64 + x;
	};

	// Reduce; computed as r = hi - lo for extra precision.
	let k = 0i64;
	if (x < 0f64) {
		k = (((LOG2_E * x) - 0.5): i64);
	} else if (x > 0f64) {
		k = (((LOG2_E * x) + 0.5): i64);
	};
	const hi = x - ((k: f64) * LN2_HI);
	const lo = (k: f64) * LN2_LO;

	// Compute
	return expmultif64(hi, lo, k);
};

// Returns 2^x.
export fn exp2f64(x: f64) f64 = {
	const overflow = 1.0239999999999999e+03;
	const underflow = -1.0740e+03;

	if (isnan(x) || x == INF) {
		return x;
	} else if (x == -INF) {
		return 0f64;
	} else if (x > overflow) {
		return INF;
	} else if (x < underflow) {
		return 0f64;
	};

	// Argument reduction; x = r×lg(e) + k with |r| ≤ ln(2)/2.
	// Computed as r = hi - lo for extra precision.
	let k = 0i64;
	if (x > 0f64) {
		k = ((x + 0.5): i64);
	} else if (x < 0f64) {
		k = ((x - 0.5): i64);
	};
	const t = x - (k: f64);
	const hi = t * LN2_HI;
	const lo = -t * LN2_LO;

	// Compute
	return expmultif64(hi, lo, k);
};

// __ieee754_sqrt(x)
// Return correctly rounded sqrt.
//           -----------------------------------------
//           | Use the hardware sqrt if you have one |
//           -----------------------------------------
// Method:
//   Bit by bit method using integer arithmetic. (Slow, but portable)
//   1. Normalization
//      Scale x to y in [1,4) with even powers of 2:
//      find an integer k such that  1 <= (y=x*2**(2k)) < 4, then
//              sqrt(x) = 2**k * sqrt(y)
//   2. Bit by bit computation
//      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
//           i                                                   0
//                                     i+1         2
//          s  = 2*q , and      y  =  2   * ( y - q  ).          (1)
//           i      i            i                 i
//
//      To compute q    from q , one checks whether
//                  i+1       i
//
//                            -(i+1) 2
//                      (q + 2      )  <= y.                     (2)
//                        i
//                                                            -(i+1)
//      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
//                             i+1   i             i+1   i
//
//      With some algebraic manipulation, it is not difficult to see
//      that (2) is equivalent to
//                             -(i+1)
//                      s  +  2       <= y                       (3)
//                       i                i
//
//      The advantage of (3) is that s  and y  can be computed by
//                                    i      i
//      the following recurrence formula:
//          if (3) is false
//
//          s     =  s  ,       y    = y   ;                     (4)
//           i+1      i          i+1    i
//
//      otherwise,
//                         -i                      -(i+1)
//          s     =  s  + 2  ,  y    = y  -  s  - 2              (5)
//           i+1      i          i+1    i     i
//
//      One may easily use induction to prove (4) and (5).
//      Note. Since the left hand side of (3) contain only i+2 bits,
//            it is not necessary to do a full (53-bit) comparison
//            in (3).
//   3. Final rounding
//      After generating the 53 bits result, we compute one more bit.
//      Together with the remainder, we can decide whether the
//      result is exact, bigger than 1/2ulp, or less than 1/2ulp
//      (it will never equal to 1/2ulp).
//      The rounding mode can be detected by checking whether
//      huge + tiny is equal to huge, and whether huge - tiny is
//      equal to huge for some floating point number "huge" and "tiny".

// Returns the square root of x.
export fn sqrtf64(x: f64) f64 = {
	if (x == 0f64) {
		return x;
	} else if (isnan(x) || x == INF) {
		return x;
	} else if (x < 0f64) {
		return NAN;
	};

	let bits = f64bits(x);

	// Normalize x
	let exp = (((bits >> F64_MANTISSA_BITS) & F64_EXPONENT_MASK): i64);
	if (exp == 0i64) {
		// Subnormal x
		for (bits & (1 << F64_MANTISSA_BITS) == 0) {
			bits <<= 1;
			exp -= 1;
		};
		exp += 1;
	};
	// Unbias exponent
	exp -= (F64_EXPONENT_BIAS: i64);
	bits = bits & ~(F64_EXPONENT_MASK << F64_MANTISSA_BITS);
	bits = bits | (1u64 << (F64_MANTISSA_BITS: u64));
	// Odd exp, double x to make it even
	if (exp & 1i64 == 1i64) {
		bits <<= 1;
	};
	// exp = exp/2, exponent of square root
	exp >>= 1;
	// Generate sqrt(x) bit by bit
	bits <<= 1;
	// q = sqrt(x)
	let q = 0u64;
	let s = 0u64;
	// r = moving bit from MSB to LSB
	let r = ((1u64 << (F64_MANTISSA_BITS + 1u64)): u64);
	for (r != 0) {
		const t = s + r;
		if (t <= bits) {
			s = t + r;
			bits -= t;
			q += r;
		};
		bits <<= 1u64;
		r >>= 1u64;
	};
	// Final rounding
	if (bits != 0) {
		// Remainder, result not exact
		// Round according to extra bit
		q += q & 1;
	};
	// significand + biased exponent
	bits = (q >> 1) + (
		((exp - 1i64 + (F64_EXPONENT_BIAS: i64)): u64) <<
		F64_MANTISSA_BITS);
	return f64frombits(bits);
};

fn is_f64_odd_int(x: f64) bool = {
	const (x_int, x_frac) = modfracf64(x);
	const has_no_frac = (x_frac == 0f64);
	const is_odd = ((x_int: i64 & 1i64) == 1i64);
	return has_no_frac && is_odd;
};

// Returns x^p.
export fn powf64(x: f64, p: f64) f64 = {
	if (x == 1f64 || p == 0f64) {
		return 1f64;
	} else if (p == 1f64) {
		return x;
	} else if (isnan(x)) {
		return NAN;
	} else if (isnan(p)) {
		return NAN;
	} else if (x == 0f64) {
		if (p < 0f64) {
			if (is_f64_odd_int(p)) {
				return copysignf64(INF, x);
			} else {
				return INF;
			};
		} else if (p > 0f64) {
			if (is_f64_odd_int(p)) {
				return x;
			} else {
				return 0f64;
			};
		};
	} else if (isinf(p)) {
		if (x == -1f64) {
			return 1f64;
		} else if ((absf64(x) < 1f64) == (p == INF)) {
			return 0f64;
		};
		return INF;
	} else if (isinf(x)) {
		if (x == -INF) {
			return powf64(-0f64, -p);
		} else if (p < 0f64) {
			return 0f64;
		} else if (p > 0f64) {
			return INF;
		};
	} else if (p == 0.5f64) {
		return sqrtf64(x);
	} else if (p == -0.5f64) {
		return 1f64 / sqrtf64(x);
	};

	let (p_int, p_frac) = modfracf64(absf64(p));
	if (p_frac != 0f64 && x < 0f64) {
		return NAN;
	};
	if (p_int > types::I64_MAX: f64) {
		if (x == -1f64) {
			return 1f64;
		} else if ((absf64(x) < 1f64) == (p > 0f64)) {
			return 0f64;
		} else {
			return INF;
		};
	};

	let res_mantissa = 1f64;
	let res_exp = 0i64;

	// The method used later in this function doesn't apply to fractional
	// powers, so we have to handle these separately with
	// x^p = e^{p * ln(x)}
	if (p_frac != 0f64) {
		if (p_frac > 0.5f64) {
			p_frac -= 1f64;
			p_int += 1f64;
		};
		res_mantissa = expf64(p_frac * logf64(x));
	};

	// Repeatedly square our number x, for each bit in our power p.
	// If the current bit is 1 in p, add the respective power of x to our
	// result.
	let (x_mantissa, x_exp) = frexpf64(x);
	for (let i = p_int: i64; i != 0; i >>= 1) {
		// Check for over/underflow.
		if (x_exp <= -1i64 << (F64_EXPONENT_BITS: i64)) {
			return 0f64;
		};
		if (x_exp >= 1i64 << (F64_EXPONENT_BITS: i64)) {
			return INF;
		};
		// Perform squaring.
		if (i & 1i64 == 1i64) {
			res_mantissa *= x_mantissa;
			res_exp += x_exp;
		};
		x_mantissa *= x_mantissa;
		x_exp <<= 1;
		// Correct mantisa to be in [0.5, 1).
		if (x_mantissa < 0.5f64) {
			x_mantissa += x_mantissa;
			x_exp -= 1;
		};
	};

	if (p < 0f64) {
		res_mantissa = 1f64 / res_mantissa;
		res_exp = -res_exp;
	};

	return ldexpf64(res_mantissa, res_exp);
};

// Returns the greatest integer value less than or equal to x.
export fn floorf64(x: f64) f64 = {
	if (x == 0f64 || isnan(x) || isinf(x)) {
		return x;
	};
	if (x < 0f64) {
		let (int_part, frac_part) = modfracf64(-x);
		if (frac_part != 0f64) {
			int_part += 1f64;
		};
		return -int_part;
	};
	return modfracf64(x).0;
};

// Returns the least integer value greater than or equal to x.
export fn ceilf64(x: f64) f64 = -floorf64(-x);

// Returns the integer value of x.
export fn truncf64(x: f64) f64 = {
	if (x == 0f64 || isnan(x) || isinf(x)) {
		return x;
	};
	return modfracf64(x).0;
};

// Returns the nearest integer, rounding half away from zero.
export fn roundf64(x: f64) f64 = {
	let bits = f64bits(x);
	let e = (bits >> F64_MANTISSA_BITS) & F64_EXPONENT_MASK;
	if (e < F64_EXPONENT_BIAS) {
		// Round abs(x) < 1 including denormals.
		bits &= F64_SIGN_MASK; // +-0
		if (e == F64_EXPONENT_BIAS - 1) {
			bits |= F64_ONE; // +-1
		};
	} else if (e < F64_EXPONENT_BIAS + F64_MANTISSA_BITS) {
		// Round any abs(x) >= 1 containing a fractional component
		// [0,1).
		// Numbers with larger exponents are returned unchanged since
		// they must be either an integer, infinity, or NaN.
		const half = 1u64 << (F64_MANTISSA_BITS - 1);
		e -= F64_EXPONENT_BIAS;
		bits += half >> e;
		bits = bits & ~(F64_MANTISSA_MASK >> e);
	};
	return f64frombits(bits);
};

// Returns the floating-point remainder of x / y. The magnitude of the result
// is less than y and its sign agrees with that of x.
export fn modf64(x: f64, y: f64) f64 = {
	if (y == 0f64) {
		return NAN;
	};
	if (isinf(x) || isnan(x) || isnan(y)) {
		return NAN;
	};

	y = absf64(y);

	const (y_frac, y_exp) = frexpf64(y);
	let r = x;
	if (x < 0f64) {
		r = -x;
	};

	for (r >= y) {
		const (r_frac, r_exp) = frexpf64(r);
		if (r_frac < y_frac) {
			r_exp -= 1i64;
		};
		r = r - ldexpf64(y, r_exp - y_exp);
	};
	if (x < 0f64) {
		r = -r;
	};
	return r;
};