File: ftos.ha

package info (click to toggle)
hare 0.25.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,948 kB
  • sloc: asm: 1,264; makefile: 123; sh: 114; lisp: 101
file content (458 lines) | stat: -rw-r--r-- 12,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>

// Uses Ryū for shortest, falls back to multiprecision for fixed precision.

use io;
use math;
use memio;
use strings;
use types;

// Format styles for the [[ftosf]] functions.
export type ffmt = enum {
	// General format. Uses whichever of E and F is shortest, not accounting
	// for flags.
	G,
	// Scientific notation. Consists of a number in [1, 10), an 'e' (or 'E',
	// if UPPER_EXP flag is present), then an exponent.
	E,
	// Fixed-point notation.
	F,
};

// Flags for the [[ftosf]] functions.
export type fflags = enum uint {
	NONE = 0,
	// Use a sign for both positive and negative numbers.
	SHOW_POS = 1 << 0,
	// Include at least one decimal digit.
	SHOW_POINT = 1 << 1,
	// Uppercase INFINITY and NAN.
	UPPERCASE = 1 << 2,
	// Uppercase exponent symbols E and P rather than e and p.
	UPPER_EXP = 1 << 3,
	// Use a sign for both positive and negative exponents.
	SHOW_POS_EXP = 1 << 4,
	// Show at least two digits of the exponent.
	SHOW_TWO_EXP_DIGITS = 1 << 5,
};

// Just for convenience... inline functions when?
fn ffpos(f: fflags) bool = f & fflags::SHOW_POS != 0;
fn ffpoint(f: fflags) bool = f & fflags::SHOW_POINT != 0;
fn ffcaps(f: fflags) bool = f & fflags::UPPERCASE != 0;
fn ffcaps_exp(f: fflags) bool = f & fflags::UPPER_EXP != 0;
fn ffpos_exp(f: fflags) bool = f & fflags::SHOW_POS_EXP != 0;
fn fftwodigs(f: fflags) bool = f & fflags::SHOW_TWO_EXP_DIGITS != 0;

fn declen(n: u64) uint = {
	assert(n <= 1e17);
	return if (n >= 1e17) 18
	else if (n >= 1e16) 17
	else if (n >= 1e15) 16
	else if (n >= 1e14) 15
	else if (n >= 1e13) 14
	else if (n >= 1e12) 13
	else if (n >= 1e11) 12
	else if (n >= 1e10) 11
	else if (n >= 1e9) 10
	else if (n >= 1e8) 9
	else if (n >= 1e7) 8
	else if (n >= 1e6) 7
	else if (n >= 1e5) 6
	else if (n >= 1e4) 5
	else if (n >= 1e3) 4
	else if (n >= 100) 3
	else if (n >= 10) 2
	else 1;
};

fn writestr(h: io::handle, s: str) (size | io::error) = {
	return io::writeall(h, strings::toutf8(s))?;
};

// XXX: this can likely be dedup'd with the other encode functions.
fn encode_zero(
	h: io::handle,
	f: ffmt,
	prec: (void | uint),
	flag: fflags,
) (size | io::error) = {
	let z = 0z;
	z += memio::appendrune(h, '0')?;
	let hasdec = false;
	match (prec) {
	case void => void;
	case let u: uint =>
		if (u > 0 && f != ffmt::G) {
			z += memio::appendrune(h, '.')?;
			for (let i = 0u; i < u; i += 1) {
				z += memio::appendrune(h, '0')?;
			};
			hasdec = true;
		};
	};
	if (!hasdec && ffpoint(flag)) {
		z += memio::appendrune(h, '.')?;
		z += memio::appendrune(h, '0')?;
	};
	if (f == ffmt::E) {
		z += memio::appendrune(h, if (ffcaps_exp(flag)) 'E' else 'e')?;
		if (ffpos_exp(flag)) z += memio::appendrune(h, '+')?;
		z += memio::appendrune(h, '0')?;
		if (fftwodigs(flag)) z += memio::appendrune(h, '0')?;
	};
	return z;
};

fn encode_f_dec(
	dec: *decimal,
	h: io::handle,
	f: ffmt,
	prec: (void | uint),
	flag: fflags,
) (size | io::error) = {
	// we will loop from lo <= i < hi, printing either zeros or a digit.
	// lo is simple, but hi depends intricately on f, prec, and the
	// SHOW_POINT flag.
	const lo = if (dec.dp <= 0) dec.dp - 1 else 0i32;
	let hi = match (prec) {
	case void =>
		yield if (dec.nd: i32 > dec.dp) dec.nd: i32 else dec.dp;
	case let u: uint =>
		yield if (dec.dp <= 0) lo + u: i32 + 1 else dec.dp + u: i32;
	};
	// ffmt::G: we need to remove trailing zeros
	if (f == ffmt::G) {
		// first, make sure we include at least prec digits
		if (prec is uint) {
			const p = prec as uint;
			if (dec.dp <= 0 && hi < p: i32) {
				hi = p: int;
			};
		};
		// then, cut back to the decimal point or nd
		if (hi > dec.nd: i32 && dec.dp <= 0) {
			hi = dec.nd: int;
		} else if (hi > dec.dp && dec.dp > 0) {
			hi = if (dec.nd: i32 > dec.dp) dec.nd: int else dec.dp;
		};
	};
	// SHOW_POINT: we need to go at least one past the decimal
	if (ffpoint(flag) && hi <= dec.dp) {
		hi = dec.dp + 1;
	};
	let z = 0z;
	for (let i = lo; i < hi; i += 1) {
		if (i == dec.dp) {
			z += memio::appendrune(h, '.')?;
		};
		if (0 <= i && i < dec.nd: i32) {
			z += memio::appendrune(h, (dec.digits[i] + '0'): rune)?;
		} else {
			z += memio::appendrune(h, '0')?;
		};
	};
	return z;
};

fn encode_e_dec(
	dec: *decimal,
	h: io::handle,
	f: ffmt,
	prec: (void | uint),
	flag: fflags,
) (size | io::error) = {
	let z = 0z;
	assert(dec.nd > 0);
	z += memio::appendrune(h, (dec.digits[0] + '0'): rune)?;
	const zeros: uint = match (prec) {
	case void =>
		yield 0;
	case let u: uint =>
		yield switch (f) {
		case ffmt::G =>
			yield if (dec.nd + 1 < u) u - dec.nd: uint + 1 else 0;
		case ffmt::E =>
			yield if (dec.nd < u + 1) u - dec.nd: uint + 1 else 0;
		case => abort();
		};
	};
	if (dec.nd <= 1 && ffpoint(flag) && zeros < 1) {
		zeros = 1;
	};
	if (dec.nd > 1 || zeros > 0) {
		z += memio::appendrune(h, '.')?;
	};
	for (let i = 1z; i < dec.nd; i += 1) {
		z += memio::appendrune(h, (dec.digits[i] + '0'): rune)?;
	};
	for (let i = 0u; i < zeros; i += 1) {
		z += memio::appendrune(h, '0')?;
	};
	z += memio::appendrune(h, if (ffcaps_exp(flag)) 'E' else 'e')?;
	let e = dec.dp - 1;
	if (e < 0) {
		e = -e;
		z += memio::appendrune(h, '-')?;
	} else if (ffpos_exp(flag)) {
		z += memio::appendrune(h, '+')?;
	};
	let ebuf: [3]u8 = [0...]; // max and min exponents are 3 digits
	let l = declen(e: u64);
	for (let i = 0z; i < l; i += 1) {
		ebuf[2 - i] = (e % 10): u8;
		e /= 10;
	};
	if (fftwodigs(flag) && l == 1) {
		l = 2;
	};
	for (let i = 3 - l; i < 3; i += 1) {
		z += memio::appendrune(h, (ebuf[i] + '0'): rune)?;
	};
	return z;
};

fn init_dec_mant_exp(d: *decimal, mantissa: u64, exponent: i32) void = {
	const dl = declen(mantissa);
	for (let i = 0u; i < dl; i += 1) {
		d.digits[dl - i - 1] = (mantissa % 10): u8;
		mantissa /= 10;
	};
	d.nd = dl;
	d.dp = dl: i32 + exponent;
};

fn init_dec(
	dec: *decimal,
	mantissa: u64,
	exponent: u32,
	eb: u64,
	mb: u64,
) void = {
	let e2 = (eb + mb): i32;
	let m2: u64 = 0;
	if (exponent == 0) {
		e2 = 1 - e2;
		m2 = mantissa;
	} else {
		e2 = (exponent: i32) - e2;
		m2 = (1u64 << mb) | mantissa;
	};

	dec.nd = declen(m2);
	dec.dp = dec.nd: int;
	for (let i = 0z; i < dec.nd; i += 1) {
		dec.digits[dec.nd - i - 1] = (m2 % 10): u8;
		m2 /= 10;
	};
	decimal_shift(dec, e2);
};

// Compute the number of figs to round to for the given arguments.
fn compute_round(
	dec: *decimal,
	f: ffmt,
	prec: (void | uint),
	flag: fflags,
) uint = {
	// nd is the number of sig figs that we want to end up with
	let nd: int = match (prec) {
	case void =>
		// we should only get here if Ryu did not extend past the
		// decimal point
		assert(ffpoint(flag));
		yield dec.nd: int + (if (dec.dp > 0) dec.dp: int else 0);
	case let u: uint =>
		yield switch (f) {
		case ffmt::E =>
			yield u: int + 1;
		case ffmt::F =>
			yield u: int + dec.dp: int;
		case ffmt::G =>
			yield if (u == 0) 1 else u: int;
		};
	};
	const nde = if (nd < 2) 2 else nd;
	const ndf = if (dec.dp >= 0 && nd: int < dec.dp: int + 1) dec.dp + 1
		else nd;
	if (ffpoint(flag)) {
		nd = switch (f) {
		case ffmt::E =>
			// need at least two digits, d.de0.
			yield nde;
		case ffmt::F =>
			// need enough to clear the decimal point by one.
			yield ndf: int;
		case ffmt::G =>
			// XXX: dup'd with the condition in ftosf_handle
			if (dec.dp < -1 || dec.dp: int - dec.nd: int > 2)
				yield nde: int;
			yield ndf: int;
		};
	};
	if (nd <= 0) {
		nd = 0;
	};
	return if (nd: uint > dec.nd) dec.nd: uint else nd: uint;
};

// Converts a [[types::floating]] to a string in base 10 and writes the result
// to the provided handle. Format parameters are as in [[ftosf]].
export fn fftosf(
	h: io::handle,
	n: types::floating,
	f: ffmt = ffmt::G,
	prec: (void | uint) = void,
	flag: fflags = fflags::NONE,
) (size | io::error) = {
	const (mantissa, exponent, sign, special) = match (n) {
	case let n: f64 =>
		const bits = math::f64bits(n);
		const mantissa = bits & math::F64_MANTISSA_MASK;
		const exponent = ((bits >> math::F64_MANTISSA_BITS) &
			math::F64_EXPONENT_MASK): u32;
		const sign = bits >> (math::F64_EXPONENT_BITS +
			math::F64_MANTISSA_BITS) > 0;
		const special = exponent == math::F64_EXPONENT_MASK;
		yield (mantissa, exponent, sign, special);
	case let n: f32 =>
		const bits = math::f32bits(n);
		const mantissa: u64 = bits & math::F32_MANTISSA_MASK;
		const exponent = ((bits >> math::F32_MANTISSA_BITS) &
			math::F32_EXPONENT_MASK): u32;
		const sign = bits >> (math::F32_EXPONENT_BITS +
			math::F32_MANTISSA_BITS) > 0;
		const special = exponent == math::F32_EXPONENT_MASK;
		yield (mantissa, exponent, sign, special);
	};

	if (special && mantissa != 0) {
		return writestr(h, if (ffcaps(flag)) "NAN" else "nan");
	};

	let z = 0z;
	if (sign) {
		z += memio::appendrune(h, '-')?;
	} else if (ffpos(flag)) {
		z += memio::appendrune(h, '+')?;
	};

	if (special) {
		return z + writestr(h,
			if (ffcaps(flag)) "INFINITY" else "infinity")?;
	} else if (exponent == 0 && mantissa == 0) {
		return z + encode_zero(h, f, prec, flag)?;
	};

	let dec = decimal { ... };
	let ok = false;
	if (prec is void) {
		// Shortest via Ryū. It is not correct to use f64todecf64 for
		// f32s, they must be handled separately.
		const (mdec, edec) = match (n) {
		case f64 =>
			const d = f64todecf64(mantissa, exponent);
			yield (d.mantissa, d.exponent);
		case f32 =>
			const d = f32todecf32(mantissa: u32, exponent);
			yield (d.mantissa: u64, d.exponent);
		};
		init_dec_mant_exp(&dec, mdec, edec);
		// If SHOW_POINT and we have too few digits, then we need to
		// fall back to multiprecision.
		ok = !ffpoint(flag) || dec.dp < dec.nd: i32
			|| (f != ffmt::F && dec.dp - dec.nd: i32 > 2);
	};

	if (!ok) {
		// Fall back to multiprecision.
		match (n) {
		case f64 =>
			init_dec(&dec, mantissa, exponent,
				math::F64_EXPONENT_BIAS,
				math::F64_MANTISSA_BITS);
		case f32 =>
			init_dec(&dec, mantissa, exponent,
				math::F32_EXPONENT_BIAS,
				math::F32_MANTISSA_BITS);
		};
		trim(&dec);
		const nd = compute_round(&dec, f, prec, flag);
		round(&dec, nd);
	};

	if (f == ffmt::G) {
		trim(&dec);
	};

	if (f == ffmt::G && prec is uint) {
		if (prec as uint == 0) prec = 1;
	};

	if (dec.nd == 0) {
		// rounded to zero
		return z + encode_zero(h, f, prec, flag)?;
	} else if (f == ffmt::E || (f == ffmt::G &&
			(dec.dp < -1 || dec.dp - dec.nd: i32 > 2))) {
		return z + encode_e_dec(&dec, h, f, prec, flag)?;
	} else {
		return z + encode_f_dec(&dec, h, f, prec, flag)?;
	};
};

// Converts any [[types::floating]] to a string in base 10. The return value
// must be freed.
//
// A precision of void yields the smallest number of digits that can be parsed
// into the exact same number. Otherwise, the meaning depends on f:
// - ffmt::F, ffmt::E: Number of digits after the decimal point.
// - ffmt::G: Number of significant digits. 0 is equivalent to 1 precision, and
//   trailing zeros are removed.
export fn ftosf(
	n: types::floating,
	f: ffmt = ffmt::G,
	prec: (void | uint) = void,
	flag: fflags = fflags::NONE,
) (str | nomem) = {
	let m = memio::dynamic();
	match (fftosf(&m, n, f, prec, flag)) {
	case size => void;
	case let e: io::error =>
		return e as nomem;
	};
	return memio::string(&m)!;
};

// Converts a f64 to a string in base 10. The return value is statically
// allocated and will be overwritten on subsequent calls; see [[strings::dup]]
// to duplicate the result. The result is equivalent to [[ftosf]] with format G
// and precision void.
export fn f64tos(n: f64) const str = {
	// The biggest string produced by a f64 number in base 10 would have the
	// negative sign, followed by a digit and decimal point, and then
	// sixteen more decimal digits, followed by 'e' and another negative
	// sign and the maximum of three digits for exponent.
	// (1 + 1 + 1 + 16 + 1 + 1 + 3) = 24
	static let buf: [24]u8 = [0...];
	let m = memio::fixed(buf);
	fftosf(&m, n)!;
	return memio::string(&m)!;
};

// Converts a f32 to a string in base 10. The return value is statically
// allocated and will be overwritten on subsequent calls; see [[strings::dup]]
// to duplicate the result. The result is equivalent to [[ftosf]] with format G
// and precision void.
export fn f32tos(n: f32) const str = {
	// The biggest string produced by a f32 number in base 10 would have the
	// negative sign, followed by a digit and decimal point, and then seven
	// more decimal digits, followed by 'e' and another negative sign and
	// the maximum of two digits for exponent.
	// (1 + 1 + 1 + 7 + 1 + 1 + 2) = 14
	static let buf: [14]u8 = [0...];
	let m = memio::fixed(buf);
	fftosf(&m, n)!;
	return memio::string(&m)!;
};