File: encoding.ha

package info (click to toggle)
hare 0.26.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,352 kB
  • sloc: asm: 1,374; makefile: 123; sh: 117; lisp: 101
file content (294 lines) | stat: -rw-r--r-- 8,933 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>

// The following code was initially ported from BearSSL.
//
// Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
use crypto::math::*;

// Minimal required words to encode 'x' into an []word. To statically allocate
// resources, following expression may be used:
//
//     ((number_of_bits + WORD_BITSZ - 1) / WORD_BITSZ) + 1
export fn encodelen(x: []u8) size = {
	return (((len(x) * 8) + WORD_BITSZ - 1) / WORD_BITSZ) + 1;
};

// Encode 'src' from its big-endian unsigned encoding into the internal
// representation. The caller must make sure that 'dest' has enough space to
// store 'src'. See [[encodelen]] for how to calculate the required size.
//
// This function runs in constant time for given 'src' length.
export fn encode(dest: []word, src: const []u8) void = {
	let acc: u32 = 0;
	let accbits: u32 = 0;
	let didx: size = 1;

	for (let i = len(src) - 1; i < len(src); i -= 1) {
		acc |= (src[i] << accbits);
		accbits += 8;

		if (accbits >= WORD_BITSZ) {
			dest[didx] = (acc & WORD_BITMASK): word;
			accbits -= WORD_BITSZ;
			acc = src[i] >> (8 - accbits);
			didx += 1;
		};
	};

	dest[didx] = acc: word;

	dest[0] = countbits(dest[1..didx + 1]): word;
};

// Get the announced bit length of 'n' in encoded form.
fn countbits(n: const []word) u32 = {
	let tw: u32 = 0;
	let twk: u32 = 0;

	for (let i = len(n) - 1; i < len(n); i -= 1) {
		const c = equ32(tw, 0);
		const w = n[i];
		tw = muxu32(c, w, tw);
		twk = muxu32(c, i: u32, twk);
	};

	return (twk << WORD_SHIFT) + word_countbits(tw);
};

// Counts the number of bits until including the highest bit set to 1.
fn word_countbits(x: u32) u32 = {
	let k: u32 = nequ32(x, 0);
	let c: u32 = 0;

	c = gtu32(x, 0xffff);
	x = muxu32(c, x >> 16, x);
	k += c << 4;

	c = gtu32(x, 0x00ff);
	x = muxu32(c, x >>  8, x);
	k += c << 3;

	c = gtu32(x, 0x000f);
	x = muxu32(c, x >>  4, x);
	k += c << 2;

	c = gtu32(x, 0x0003);
	x = muxu32(c, x >>  2, x);
	k += c << 1;

	k += gtu32(x, 0x0001);

	return k;
};

// Get the encoded bit length of a word.
fn ebitlen(x: const []word) u32 = {
	return x[0];
};

// Get the effective word lenght of 'x'. The effective wordlen is the number of
// words that are used to represent the actual value. Eg. the number 7 will have
// an effective word length of 1, no matter of len(x). The first element
// containing the encoded word len is not added to the result.
export fn ewordlen(x: const []word) u32 = {
	return (x[0] + WORD_BITSZ) >> WORD_SHIFT;
};

// Decode 'src' into a big-endian unsigned byte array. The caller must ensure
// that 'dest' has enough space to store the decoded value. See [[decodelen]] on
// how to determine the required length.
export fn decode(dest: []u8, src: const []word) void = {
	let acc: u64 = 0;
	let accbits: u64 = 0;
	let sidx: size = 1;
	let sz = ewordlen(src);
	for (let i = len(dest) - 1; i < len(dest); i -= 1) {
		if (accbits < 8) {
			if (sidx <= sz) {
				acc |= ((src[sidx]: u64) << accbits: u64): u64;
				sidx += 1;
			};
			accbits += WORD_BITSZ;
		};
		dest[i] = acc: u8;
		acc >>= 8;
		accbits -= 8;
	};
};

// Returns the number of bytes required to store a big integer given by 'src'.
//
// For static allocation following expression may be used:
//
//     ((len(src) - 1) * WORD_BITSZ + 7) / 8
export fn decodelen(src: const []word) size = {
	return ((len(src) - 1) * WORD_BITSZ + 7) / 8;
};

// Encodes an integer from its big-endian unsigned encoding. 'src' must be lower
// than 'm'. If not 'dest' will be set to 0. 'dest' will have the announced bit
// length of 'm' after decoding.
//
// The return value is 1 if the decoded value fits within 'm' or 0 otherwise.
//
// This function runs in constant time for a given 'src' length and announced
// bit length of m, independent of whether the value fits within 'm' or not.
export fn encodemod(dest: []word, src: const []u8, m: const []word) u32 = {
	// Two-pass algorithm: in the first pass, we determine whether the
	// value fits; in the second pass, we do the actual write.
	//
	// During the first pass, 'r' contains the comparison result so
	// far:
	//  0x00000000   value is equal to the modulus
	//  0x00000001   value is greater than the modulus
	//  0xFFFFFFFF   value is lower than the modulus
	//
	// Since we iterate starting with the least significant bytes (at
	// the end of src[]), each new comparison overrides the previous
	// except when the comparison yields 0 (equal).
	//
	// During the second pass, 'r' is either 0xFFFFFFFF (value fits)
	// or 0x00000000 (value does not fit).
	//
	// We must iterate over all bytes of the source, _and_ possibly
	// some extra virtual bytes (with value 0) so as to cover the
	// complete modulus as well. We also add 4 such extra bytes beyond
	// the modulus length because it then guarantees that no accumulated
	// partial word remains to be processed.

	let mlen = 0z, tlen = 0z;

	mlen = ewordlen(m);
	tlen = mlen << (WORD_SHIFT - 3); // mlen in bytes
	if (tlen < len(src)) {
		tlen = len(src);
	};
	tlen += 4;
	let r: u32 = 0;
	for (let pass = 0z; pass < 2; pass += 1) {
		let v: size = 1;
		let acc: u32 = 0, acc_len: u32 = 0;

		for (let u = 0z; u < tlen; u += 1) {
			// inner loop is similar to encode until the mlen check
			let b: u32 = 0;

			if (u < len(src)) {
				b = src[len(src) - 1 - u];
			};
			acc |= (b << acc_len);
			acc_len += 8;
			if (acc_len >= WORD_BITSZ) {
				const xw: u32 = acc & WORD_BITMASK;
				acc_len -= WORD_BITSZ;
				acc = b >> (8 - acc_len);
				if (v <= mlen) {
					if (pass == 1) {
						dest[v] = (r & xw): word;
					} else {
						let cc = cmpu32(xw, m[v]: u32): u32;
						r = muxu32(equ32(cc, 0), r, cc);
					};
				} else {
					if (pass == 0) {
						r = muxu32(equ32(xw, 0), r, 1);
					};
				};
				v += 1;
			};
		};

		// When we reach this point at the end of the first pass:
		// r is either 0, 1 or -1; we want to set r to 0 if it
		// is equal to 0 or 1, and leave it to -1 otherwise.
		//
		// When we reach this point at the end of the second pass:
		// r is either 0 or -1; we want to leave that value
		// untouched. This is a subcase of the previous.
		r >>= 1;
		r |= (r << 1);
	};

	dest[0] = m[0];
	return r & 1;
};

// Encode an integer from its big-endian unsigned representation, and reduce it
// modulo the provided modulus 'm'. The announced bit length of the result is
// set to be equal to that of the modulus.
//
// 'dest' must be distinct from 'm'.
export fn encodereduce(dest: []word, src: const []u8, m: const []word) void = {
	assert(&dest[0] != &m[0], "'dest' and 'm' must be distinct");

	// Get the encoded bit length.
	const m_ebitlen = m[0];

	// Special case for an invalid (null) modulus.
	if (m_ebitlen == 0) {
		dest[0] = 0;
		return;
	};

	zero(dest, m_ebitlen);

	// First decode directly as many bytes as possible. This requires
	// computing the actual bit length.
	let m_rbitlen = m_ebitlen >> WORD_SHIFT;
	m_rbitlen = (m_ebitlen & WORD_BITSZ)
		+ (m_rbitlen << WORD_SHIFT) - m_rbitlen;
	const mblen: size = (m_rbitlen + 7) >> 3;
	let k: size = mblen - 1;
	if (k >= len(src)) {
		encode(dest, src);
		dest[0] = m_ebitlen;
		return;
	};
	encode(dest, src[..k]);
	dest[0] = m_ebitlen;

	// Input remaining bytes, using 31-bit words.
	let acc: word = 0;
	let acc_len: word = 0;
	for (k < len(src)) {
		const v = src[k];
		k += 1;
		if (acc_len >= 23) {
			acc_len -= 23;
			acc <<= (8 - acc_len);
			acc |= v >> acc_len;
			muladd_small(dest, acc, m);
			acc = v & (0xFF >> (8 - acc_len));
		} else {
			acc = (acc << 8) | v;
			acc_len += 8;
		};
	};

	// We may have some bits accumulated. We then perform a shift to
	// be able to inject these bits as a full 31-bit word.
	if (acc_len != 0) {
		acc = (acc | (dest[1] << acc_len)) & WORD_BITMASK;
		rshift(dest, WORD_BITSZ - acc_len);
		muladd_small(dest, acc, m);
	};
};