1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>
// The following code was initially ported from BearSSL.
//
// Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
use crypto::math::*;
// Minimal required words to encode 'x' into an []word. To statically allocate
// resources, following expression may be used:
//
// ((number_of_bits + WORD_BITSZ - 1) / WORD_BITSZ) + 1
export fn encodelen(x: []u8) size = {
return (((len(x) * 8) + WORD_BITSZ - 1) / WORD_BITSZ) + 1;
};
// Encode 'src' from its big-endian unsigned encoding into the internal
// representation. The caller must make sure that 'dest' has enough space to
// store 'src'. See [[encodelen]] for how to calculate the required size.
//
// This function runs in constant time for given 'src' length.
export fn encode(dest: []word, src: const []u8) void = {
let acc: u32 = 0;
let accbits: u32 = 0;
let didx: size = 1;
for (let i = len(src) - 1; i < len(src); i -= 1) {
acc |= (src[i] << accbits);
accbits += 8;
if (accbits >= WORD_BITSZ) {
dest[didx] = (acc & WORD_BITMASK): word;
accbits -= WORD_BITSZ;
acc = src[i] >> (8 - accbits);
didx += 1;
};
};
dest[didx] = acc: word;
dest[0] = countbits(dest[1..didx + 1]): word;
};
// Get the announced bit length of 'n' in encoded form.
fn countbits(n: const []word) u32 = {
let tw: u32 = 0;
let twk: u32 = 0;
for (let i = len(n) - 1; i < len(n); i -= 1) {
const c = equ32(tw, 0);
const w = n[i];
tw = muxu32(c, w, tw);
twk = muxu32(c, i: u32, twk);
};
return (twk << WORD_SHIFT) + word_countbits(tw);
};
// Counts the number of bits until including the highest bit set to 1.
fn word_countbits(x: u32) u32 = {
let k: u32 = nequ32(x, 0);
let c: u32 = 0;
c = gtu32(x, 0xffff);
x = muxu32(c, x >> 16, x);
k += c << 4;
c = gtu32(x, 0x00ff);
x = muxu32(c, x >> 8, x);
k += c << 3;
c = gtu32(x, 0x000f);
x = muxu32(c, x >> 4, x);
k += c << 2;
c = gtu32(x, 0x0003);
x = muxu32(c, x >> 2, x);
k += c << 1;
k += gtu32(x, 0x0001);
return k;
};
// Get the encoded bit length of a word.
fn ebitlen(x: const []word) u32 = {
return x[0];
};
// Get the effective word lenght of 'x'. The effective wordlen is the number of
// words that are used to represent the actual value. Eg. the number 7 will have
// an effective word length of 1, no matter of len(x). The first element
// containing the encoded word len is not added to the result.
export fn ewordlen(x: const []word) u32 = {
return (x[0] + WORD_BITSZ) >> WORD_SHIFT;
};
// Decode 'src' into a big-endian unsigned byte array. The caller must ensure
// that 'dest' has enough space to store the decoded value. See [[decodelen]] on
// how to determine the required length.
export fn decode(dest: []u8, src: const []word) void = {
let acc: u64 = 0;
let accbits: u64 = 0;
let sidx: size = 1;
let sz = ewordlen(src);
for (let i = len(dest) - 1; i < len(dest); i -= 1) {
if (accbits < 8) {
if (sidx <= sz) {
acc |= ((src[sidx]: u64) << accbits: u64): u64;
sidx += 1;
};
accbits += WORD_BITSZ;
};
dest[i] = acc: u8;
acc >>= 8;
accbits -= 8;
};
};
// Returns the number of bytes required to store a big integer given by 'src'.
//
// For static allocation following expression may be used:
//
// ((len(src) - 1) * WORD_BITSZ + 7) / 8
export fn decodelen(src: const []word) size = {
return ((len(src) - 1) * WORD_BITSZ + 7) / 8;
};
// Encodes an integer from its big-endian unsigned encoding. 'src' must be lower
// than 'm'. If not 'dest' will be set to 0. 'dest' will have the announced bit
// length of 'm' after decoding.
//
// The return value is 1 if the decoded value fits within 'm' or 0 otherwise.
//
// This function runs in constant time for a given 'src' length and announced
// bit length of m, independent of whether the value fits within 'm' or not.
export fn encodemod(dest: []word, src: const []u8, m: const []word) u32 = {
// Two-pass algorithm: in the first pass, we determine whether the
// value fits; in the second pass, we do the actual write.
//
// During the first pass, 'r' contains the comparison result so
// far:
// 0x00000000 value is equal to the modulus
// 0x00000001 value is greater than the modulus
// 0xFFFFFFFF value is lower than the modulus
//
// Since we iterate starting with the least significant bytes (at
// the end of src[]), each new comparison overrides the previous
// except when the comparison yields 0 (equal).
//
// During the second pass, 'r' is either 0xFFFFFFFF (value fits)
// or 0x00000000 (value does not fit).
//
// We must iterate over all bytes of the source, _and_ possibly
// some extra virtual bytes (with value 0) so as to cover the
// complete modulus as well. We also add 4 such extra bytes beyond
// the modulus length because it then guarantees that no accumulated
// partial word remains to be processed.
let mlen = 0z, tlen = 0z;
mlen = ewordlen(m);
tlen = mlen << (WORD_SHIFT - 3); // mlen in bytes
if (tlen < len(src)) {
tlen = len(src);
};
tlen += 4;
let r: u32 = 0;
for (let pass = 0z; pass < 2; pass += 1) {
let v: size = 1;
let acc: u32 = 0, acc_len: u32 = 0;
for (let u = 0z; u < tlen; u += 1) {
// inner loop is similar to encode until the mlen check
let b: u32 = 0;
if (u < len(src)) {
b = src[len(src) - 1 - u];
};
acc |= (b << acc_len);
acc_len += 8;
if (acc_len >= WORD_BITSZ) {
const xw: u32 = acc & WORD_BITMASK;
acc_len -= WORD_BITSZ;
acc = b >> (8 - acc_len);
if (v <= mlen) {
if (pass == 1) {
dest[v] = (r & xw): word;
} else {
let cc = cmpu32(xw, m[v]: u32): u32;
r = muxu32(equ32(cc, 0), r, cc);
};
} else {
if (pass == 0) {
r = muxu32(equ32(xw, 0), r, 1);
};
};
v += 1;
};
};
// When we reach this point at the end of the first pass:
// r is either 0, 1 or -1; we want to set r to 0 if it
// is equal to 0 or 1, and leave it to -1 otherwise.
//
// When we reach this point at the end of the second pass:
// r is either 0 or -1; we want to leave that value
// untouched. This is a subcase of the previous.
r >>= 1;
r |= (r << 1);
};
dest[0] = m[0];
return r & 1;
};
// Encode an integer from its big-endian unsigned representation, and reduce it
// modulo the provided modulus 'm'. The announced bit length of the result is
// set to be equal to that of the modulus.
//
// 'dest' must be distinct from 'm'.
export fn encodereduce(dest: []word, src: const []u8, m: const []word) void = {
assert(&dest[0] != &m[0], "'dest' and 'm' must be distinct");
// Get the encoded bit length.
const m_ebitlen = m[0];
// Special case for an invalid (null) modulus.
if (m_ebitlen == 0) {
dest[0] = 0;
return;
};
zero(dest, m_ebitlen);
// First decode directly as many bytes as possible. This requires
// computing the actual bit length.
let m_rbitlen = m_ebitlen >> WORD_SHIFT;
m_rbitlen = (m_ebitlen & WORD_BITSZ)
+ (m_rbitlen << WORD_SHIFT) - m_rbitlen;
const mblen: size = (m_rbitlen + 7) >> 3;
let k: size = mblen - 1;
if (k >= len(src)) {
encode(dest, src);
dest[0] = m_ebitlen;
return;
};
encode(dest, src[..k]);
dest[0] = m_ebitlen;
// Input remaining bytes, using 31-bit words.
let acc: word = 0;
let acc_len: word = 0;
for (k < len(src)) {
const v = src[k];
k += 1;
if (acc_len >= 23) {
acc_len -= 23;
acc <<= (8 - acc_len);
acc |= v >> acc_len;
muladd_small(dest, acc, m);
acc = v & (0xFF >> (8 - acc_len));
} else {
acc = (acc << 8) | v;
acc_len += 8;
};
};
// We may have some bits accumulated. We then perform a shift to
// be able to inject these bits as a full 31-bit word.
if (acc_len != 0) {
acc = (acc | (dest[1] << acc_len)) & WORD_BITMASK;
rshift(dest, WORD_BITSZ - acc_len);
muladd_small(dest, acc, m);
};
};
|