File: trig.ha

package info (click to toggle)
hare 0.26.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,352 kB
  • sloc: asm: 1,374; makefile: 123; sh: 117; lisp: 101
file content (892 lines) | stat: -rw-r--r-- 23,963 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
// SPDX-License-Identifier: MPL-2.0
// (c) Hare authors <https://harelang.org>

// Sections of the code below are based on Go's implementation, which is, in
// turn, based on:
// * the Cephes Mathematical Library (cephes/cmath/{sin,..}), available from
//   http://www.netlib.org/cephes/cmath.tgz.
// * FreeBSD's /usr/src/lib/msun/src/{s_asinh.c,...}
// The original C code, as well as the respective comments and constants are
// from these libraries.
//
// The Cephes copyright notice:
// ====================================================
// Cephes Math Library Release 2.8:  June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
//    Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
//   The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
//   Stephen L. Moshier
//   moshier@na-net.ornl.gov
// ====================================================
//
// The FreeBSD copyright notice:
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// The Go copyright notice:
// ====================================================
// Copyright (c) 2009 The Go Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//    * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//    * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//    * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ====================================================

// sin coefficients
const SIN_CF: [_]f64 = [
	1.58962301576546568060e-10, // 0x3de5d8fd1fd19ccd
	-2.50507477628578072866e-8, // 0xbe5ae5e5a9291f5d
	2.75573136213857245213e-6, // 0x3ec71de3567d48a1
	-1.98412698295895385996e-4, // 0xbf2a01a019bfdf03
	8.33333333332211858878e-3, // 0x3f8111111110f7d0
	-1.66666666666666307295e-1, // 0xbfc5555555555548
];

// cos coefficients
const COS_CF: [_]f64 = [
	-1.13585365213876817300e-11, // 0xbda8fa49a0861a9b
	2.08757008419747316778e-9, // 0x3e21ee9d7b4e3f05
	-2.75573141792967388112e-7, // 0xbe927e4f7eac4bc6
	2.48015872888517045348e-5, // 0x3efa01a019c844f5
	-1.38888888888730564116e-3, // 0xbf56c16c16c14f91
	4.16666666666665929218e-2, // 0x3fa555555555554b
];

// PI / 4 split into three parts
def PI4A: f64 = 7.85398125648498535156e-1; // 0x3fe921fb40000000
def PI4B: f64 = 3.77489470793079817668e-8; // 0x3e64442d00000000
def PI4C: f64 = 2.69515142907905952645e-15; // 0x3ce8469898cc5170

// reduce_threshold is the maximum value of x where the reduction using PI/4
// in 3 float64 parts still gives accurate results. This threshold
// is set by y*C being representable as a float64 without error
// where y is given by y = floor(x * (4 / PI)) and C is the leading partial
// terms of 4/PI. Since the leading terms (PI4A and PI4B in sin.go) have 30
// and 32 trailing zero bits, y should have less than 30 significant bits.
//	y < 1<<30  -> floor(x*4/PI) < 1<<30 -> x < (1<<30 - 1) * PI/4
// So, conservatively we can take x < 1<<29.
// Above this threshold Payne-Hanek range reduction must be used.
def REDUCE_THRESHOLD: f64 = ((1u64 << 29): f64);

// MPI4 is the binary digits of 4/pi as a uint64 array,
// that is, 4/pi = Sum MPI4[i]*2^(-64*i)
// 19 64-bit digits and the leading one bit give 1217 bits
// of precision to handle the largest possible float64 exponent.
const MPI4: [_]u64 = [
	0x0000000000000001,
	0x45f306dc9c882a53,
	0xf84eafa3ea69bb81,
	0xb6c52b3278872083,
	0xfca2c757bd778ac3,
	0x6e48dc74849ba5c0,
	0x0c925dd413a32439,
	0xfc3bd63962534e7d,
	0xd1046bea5d768909,
	0xd338e04d68befc82,
	0x7323ac7306a673e9,
	0x3908bf177bf25076,
	0x3ff12fffbc0b301f,
	0xde5e2316b414da3e,
	0xda6cfd9e4f96136e,
	0x9e8c7ecd3cbfd45a,
	0xea4f758fd7cbe2f6,
	0x7a0e73ef14a525d4,
	0xd7f6bf623f1aba10,
	0xac06608df8f6d757,
];

// trig_reduce implements Payne-Hanek range reduction by PI/4 for x > 0. It
// returns the integer part mod 8 (j) and the fractional part (z) of x / (PI/4).
fn trig_reduce(x: f64) (u64, f64) = {
	// The implementation is based on: "ARGUMENT REDUCTION FOR HUGE
	// ARGUMENTS: Good to the Last Bit" K. C. Ng et al, March 24, 1992
	// The simulated multi-precision calculation of x * B uses 64-bit
	// integer arithmetic.
	const PI4 = PI / 4f64;
	if (x < PI4) {
		return (0u64, x);
	};
	// Extract out the integer and exponent such that x = ix * 2 ** exp
	let ix = f64bits(x);
	const exp =
		((ix >> F64_MANTISSA_BITS &
			F64_EXPONENT_MASK): i64) -
		(F64_EXPONENT_BIAS: i64) -
		(F64_MANTISSA_BITS: i64);
	ix = ix & ~(F64_EXPONENT_MASK << F64_MANTISSA_BITS);
	ix |= 1 << F64_MANTISSA_BITS;
	// Use the exponent to extract the 3 appropriate uint64 digits from
	// MPI4, B ~ (z0, z1, z2), such that the product leading digit has the
	// exponent -61. Note, exp >= -53 since x >= PI4 and exp < 971 for
	// maximum float64.
	const digit = ((exp + 61): u64) / 64;
	const bitshift = ((exp + 61): u64) % 64;
	const z0 = (MPI4[digit] << bitshift) |
		(MPI4[digit + 1] >> (64 - bitshift));
	const z1 = (MPI4[digit + 1] << bitshift) |
		(MPI4[digit + 2] >> (64 - bitshift));
	const z2 = (MPI4[digit + 2] << bitshift) |
		(MPI4[digit + 3] >> (64 - bitshift));
	// Multiply mantissa by the digits and extract the upper two digits
	// (hi, lo).
	const (z2hi, _) = mulu64(z2, ix);
	const (z1hi, z1lo) = mulu64(z1, ix);
	const z0lo = z0 * ix;
	const lo = z1lo + z2hi;
	let hi = z0lo + z1hi;
	hi += (z1lo >> 63) & (z2hi >> 63); // carry from lo
	// The top 3 bits are j.
	let j = hi >> 61;
	// Extract the fraction and find its magnitude.
	hi = hi << 3 | lo >> 61;
	const lz = ((leading_zeros_u64(hi)): uint);
	const e = ((F64_EXPONENT_BIAS - (lz + 1)): u64);
	// Clear implicit mantissa bit and shift into place.
	hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)));
	hi >>= 64 - F64_MANTISSA_BITS;
	// Include the exponent and convert to a float.
	hi |= e << F64_MANTISSA_BITS;
	let z = f64frombits(hi);
	// Map zeros to origin.
	if (j & 1 == 1) {
		j += 1;
		j &= 7;
		z -= 1f64;
	};
	// Multiply the fractional part by pi/4.
	return (j, z * PI4);
};

//      cos.c
//
//      Circular cosine
//
// SYNOPSIS:
//
// double x, y, cos();
// y = cos( x );
//
// DESCRIPTION:
//
// Range reduction is into intervals of pi/4.  The reduction error is nearly
// eliminated by contriving an extended precision modular arithmetic.
//
// Two polynomial approximating functions are employed.
// Between 0 and pi/4 the cosine is approximated by
//      1  -  x**2 Q(x**2).
// Between pi/4 and pi/2 the sine is represented as
//      x  +  x**3 P(x**2).
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain      # trials      peak         rms
//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
//    DEC        0,+1.07e9   17000       3.0e-17     7.2e-18

// Returns the cosine of x, in radians.
export fn cosf64(x: f64) f64 = {
	if (isnan(x) || isinf(x)) {
		return NAN;
	};

	// Make argument positive
	let is_negative = false;
	x = absf64(x);

	let j = 0u64;
	let y = 0f64;
	let z = 0f64;
	if (x >= REDUCE_THRESHOLD) {
		const reduce_res = trig_reduce(x);
		j = reduce_res.0;
		z = reduce_res.1;
	} else {
		// Integer part of x/(PI/4), as integer for tests on the phase
		// angle
		j = ((x * (4f64 / PI)): i64: u64);
		// Integer part of x/(PI/4), as float
		y = (j: i64: f64);

		// Map zeros to origin
		if (j & 1 == 1) {
			j += 1;
			y += 1f64;
		};
		// Octant modulo 2PI radians (360 degrees)
		j &= 7;
		// Extended precision modular arithmetic
		z = ((x - (y * PI4A)) - (y * PI4B)) - (y * PI4C);
	};

	if (j > 3) {
		j -= 4;
		is_negative = !is_negative;
	};
	if (j > 1) {
		is_negative = !is_negative;
	};

	const zz = z * z;
	if (j == 1 || j == 2) {
		y = z + z * zz * ((((((SIN_CF[0] * zz) +
			SIN_CF[1]) * zz +
			SIN_CF[2]) * zz +
			SIN_CF[3]) * zz +
			SIN_CF[4]) * zz +
			SIN_CF[5]);
	} else {
		y = 1.0 - 0.5 * zz + zz * zz * ((((((COS_CF[0] * zz) +
			COS_CF[1]) * zz +
			COS_CF[2]) * zz +
			COS_CF[3]) * zz +
			COS_CF[4]) * zz +
			COS_CF[5]);
	};
	if (is_negative) {
		y = -y;
	};
	return y;
};

//      sin.c
//
//      Circular sine
//
// SYNOPSIS:
//
// double x, y, sin();
// y = sin( x );
//
// DESCRIPTION:
//
// Range reduction is into intervals of pi/4.  The reduction error is nearly
// eliminated by contriving an extended precision modular arithmetic.
//
// Two polynomial approximating functions are employed.
// Between 0 and pi/4 the sine is approximated by
//      x  +  x**3 P(x**2).
// Between pi/4 and pi/2 the cosine is represented as
//      1  -  x**2 Q(x**2).
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain      # trials      peak         rms
//    DEC       0, 10       150000       3.0e-17     7.8e-18
//    IEEE -1.07e9,+1.07e9  130000       2.1e-16     5.4e-17
//
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss
// is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may
// be meaningless for x > 2**49 = 5.6e14.

// Returns the sine of x, in radians.
export fn sinf64(x: f64) f64 = {
	if (x == 0f64 || isnan(x)) {
		return x;
	} else if (isinf(x)) {
		return NAN;
	};

	// Make argument positive but save the sign
	let is_negative = false;
	if (x < 0f64) {
		x = -x;
		is_negative = true;
	};

	let j = 0u64;
	let y = 0f64;
	let z = 0f64;
	if (x >= REDUCE_THRESHOLD) {
		const reduce_res = trig_reduce(x);
		j = reduce_res.0;
		z = reduce_res.1;
	} else {
		// Integer part of x/(PI/4), as integer for tests on the phase
		// angle
		j = ((x * (4f64 / PI)): i64: u64);
		// Integer part of x/(PI/4), as float
		y = (j: i64: f64);

		// Map zeros to origin
		if (j & 1 == 1) {
			j += 1;
			y += 1f64;
		};
		// Octant modulo 2PI radians (360 degrees)
		j &= 7;
		// Extended precision modular arithmetic
		z = ((x - (y * PI4A)) - (y * PI4B)) - (y * PI4C);
	};

	// Reflect in x axis
	if (j > 3) {
		j -= 4;
		is_negative = !is_negative;
	};

	const zz = z * z;
	if (j == 1 || j == 2) {
		y = 1.0 - 0.5 * zz + zz * zz *
			((((((COS_CF[0] * zz) +
				COS_CF[1]) * zz +
				COS_CF[2]) * zz +
				COS_CF[3]) * zz +
				COS_CF[4]) * zz +
				COS_CF[5]);
	} else {
		y = z + z * zz *
			((((((SIN_CF[0] * zz) +
				SIN_CF[1]) * zz +
				SIN_CF[2]) * zz +
				SIN_CF[3]) * zz +
				SIN_CF[4]) * zz +
				SIN_CF[5]);
	};
	if (is_negative) {
		y = -y;
	};
	return y;
};

//      tan.c
//
//      Circular tangent
//
// SYNOPSIS:
//
// double x, y, tan();
// y = tan( x );
//
// DESCRIPTION:
//
// Returns the circular tangent of the radian argument x.
//
// Range reduction is modulo pi/4.  A rational function
//       x + x**3 P(x**2)/Q(x**2)
// is employed in the basic interval [0, pi/4].
//
// ACCURACY:
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    DEC      +-1.07e9      44000      4.1e-17     1.0e-17
//    IEEE     +-1.07e9      30000      2.9e-16     8.1e-17
//
// Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9.  The loss
// is not gradual, but jumps suddenly to about 1 part in 10e7.  Results may
// be meaningless for x > 2**49 = 5.6e14.
// [Accuracy loss statement from sin.go comments.]

// tan coefficients
const TAN_P: [_]f64 = [
	-1.30936939181383777646e4, // 0xc0c992d8d24f3f38
	1.15351664838587416140e6, // 0x413199eca5fc9ddd
	-1.79565251976484877988e7, // 0xc1711fead3299176
];
const TAN_Q: [_]f64 = [
	1.00000000000000000000e0,
	1.36812963470692954678e4, // 0x40cab8a5eeb36572
	-1.32089234440210967447e6, // 0xc13427bc582abc96
	2.50083801823357915839e7, // 0x4177d98fc2ead8ef
	-5.38695755929454629881e7, // 0xc189afe03cbe5a31
];

// Returns the tangent of x, in radians.
export fn tanf64(x: f64) f64 = {
	if (x == 0f64 || isnan(x)) {
		return x;
	} else if (isinf(x)) {
		return NAN;
	};

	// Make argument positive but save the sign
	let is_negative = false;
	if (x < 0f64) {
		x = -x;
		is_negative = true;
	};
	let j = 0u64;
	let y = 0f64;
	let z = 0f64;
	if (x >= REDUCE_THRESHOLD) {
		const reduce_res = trig_reduce(x);
		j = reduce_res.0;
		z = reduce_res.1;
	} else {
		// Integer part of x/(PI/4), as integer for tests on the phase
		// angle
		j = ((x * (4f64 / PI)): i64: u64);
		// Integer part of x/(PI/4), as float
		y = (j: i64: f64);

		// Map zeros and singularities to origin
		if (j & 1 == 1) {
			j += 1;
			y += 1f64;
		};

		z = ((x - (y * PI4A)) - (y * PI4B)) - (y * PI4C);
	};
	const zz = z * z;

	if (zz > 1e-14) {
		y = z + z * (zz *
			(((TAN_P[0] * zz) + TAN_P[1]) * zz + TAN_P[2]) /
			((((zz + TAN_Q[1]) * zz +
				TAN_Q[2]) * zz +
				TAN_Q[3]) * zz +
				TAN_Q[4]));
	} else {
		y = z;
	};
	if (j & 2 == 2) {
		y = -1f64 / y;
	};
	if (is_negative) {
		y = -y;
	};
	return y;
};

// Evaluates a series valid in the range [0, 0.66].
fn xatan(x: f64) f64 = {
	const P0 = -8.750608600031904122785e-01;
	const P1 = -1.615753718733365076637e+01;
	const P2 = -7.500855792314704667340e+01;
	const P3 = -1.228866684490136173410e+02;
	const P4 = -6.485021904942025371773e+01;
	const Q0 =  2.485846490142306297962e+01;
	const Q1 =  1.650270098316988542046e+02;
	const Q2 =  4.328810604912902668951e+02;
	const Q3 =  4.853903996359136964868e+02;
	const Q4 =  1.945506571482613964425e+02;
	let z = x * x;
	z = z * ((((P0 * z + P1) * z + P2) * z + P3) * z + P4) /
		(((((z + Q0) * z + Q1) * z + Q2) * z + Q3) * z + Q4);
	z = (x * z) + x;
	return z;
};

// Reduces argument (known to be positive) to the range [0, 0.66] and calls
// xatan.
fn satan(x: f64) f64 = {
	// pi / 2 = PIO2 + morebits
	const morebits = 6.123233995736765886130e-17;
	// tan(3 * pi / 8)
	const tan3pio8 = 2.41421356237309504880;
	if (x <= 0.66) {
		return xatan(x);
	};
	if (x > tan3pio8) {
		return (PI / 2f64) - xatan(1f64 / x) + morebits;
	};
	return (PI / 4f64) +
		xatan((x - 1f64) / (x + 1f64)) +
		(0.5f64 * morebits);
};

// Returns the arcsine, in radians, of x.
export fn asinf64(x: f64) f64 = {
	if (x == 0f64) {
		return x;
	};
	let is_negative = false;
	if (x < 0.064) {
		x = -x;
		is_negative = true;
	};
	if (x > 1f64) {
		return NAN;
	};
	let temp = sqrtf64(1f64 - x * x);
	if (x > 0.7f64) {
		temp = PI / 2f64 - satan(temp / x);
	} else {
		temp = satan(x / temp);
	};

	if (is_negative) {
		temp = -temp;
	};
	return temp;
};

// Returns the arccosine, in radians, of x.
export fn acosf64(x: f64) f64 = {
	return PI / 2f64 - asinf64(x);
};

// atan.c
// Inverse circular tangent (arctangent)
//
// SYNOPSIS:
// double x, y, atan();
// y = atan( x );
//
// DESCRIPTION:
// Returns radian angle between -pi/2 and +pi/2 whose tangent is x.
//
// Range reduction is from three intervals into the interval from zero to 0.66.
// The approximant uses a rational function of degree 4/5 of the form
// x + x**3 P(x)/Q(x).
//
// ACCURACY:
//                      Relative error:
// arithmetic   domain    # trials  peak     rms
//    DEC       -10, 10   50000     2.4e-17  8.3e-18
//    IEEE      -10, 10   10^6      1.8e-16  5.0e-17

// Returns the arctangent, in radians, of x.
export fn atanf64(x: f64) f64 = {
	if (x == 0f64) {
		return x;
	};
	if (x > 0f64) {
		return satan(x);
	};
	return -satan(-x);
};

// Floating-point hyperbolic sine and cosine.
// The exponential func is called for arguments greater in magnitude than 0.5.
// A series is used for arguments smaller in magnitude than 0.5.
// Cosh(x) is computed from the exponential func for all arguments.

// Returns the hyperbolic sine of x.
export fn sinhf64(x: f64) f64 = {
	// The coefficients are #2029 from Hart & Cheney. (20.36D)
	const P0 = -0.6307673640497716991184787251e+6;
	const P1 = -0.8991272022039509355398013511e+5;
	const P2 = -0.2894211355989563807284660366e+4;
	const P3 = -0.2630563213397497062819489e+2;
	const Q0 = -0.6307673640497716991212077277e+6;
	const Q1 = 0.1521517378790019070696485176e+5;
	const Q2 = -0.173678953558233699533450911e+3;

	let is_negative = false;
	if (x < 0f64) {
		x = -x;
		is_negative = true;
	};

	let temp = 0f64;
	if (x > 21f64) {
		temp = expf64(x) * 0.5f64;
	} else if (x > 0.5f64) {
		const ex = expf64(x);
		temp = (ex - (1f64 / ex)) * 0.5f64;
	} else {
		const sq = x * x;
		temp = (((P3 * sq + P2) * sq + P1) * sq + P0) * x;
		temp = temp / (((sq + Q2) * sq + Q1) * sq + Q0);
	};

	if (is_negative) {
		temp = -temp;
	};

	return temp;
};

// Returns the hyperbolic cosine of x.
export fn coshf64(x: f64) f64 = {
	x = absf64(x);
	if (x > 21f64) {
		return expf64(x) * 0.5f64;
	};
	const ex = expf64(x);
	return (ex + 1f64 / ex) * 0.5f64;
};

//      tanh.c
//
//      Hyperbolic tangent
//
// SYNOPSIS:
//
// double x, y, tanh();
//
// y = tanh( x );
//
// DESCRIPTION:
//
// Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG.
//      MAXLOG = 8.8029691931113054295988e+01 = log(2**127)
//      MINLOG = -8.872283911167299960540e+01 = log(2**-128)
//
// A rational function is used for |x| < 0.625.  The form
// x + x**3 P(x)/Q(x) of Cody & Waite is employed.
// Otherwise,
//      tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).
//
// ACCURACY:
//
//                      Relative error:
// arithmetic   domain     # trials      peak         rms
//    IEEE      -2,2        30000       2.5e-16     5.8e-17

// tanh coefficients
const TANH_P: [_]f64 = [
	-9.64399179425052238628e-1,
	-9.92877231001918586564e1,
	-1.61468768441708447952e3,
];
const TANH_Q: [_]f64 = [
	1.12811678491632931402e2,
	2.23548839060100448583e3,
	4.84406305325125486048e3,
];

// Returns the hyperbolic tangent of x.
export fn tanhf64(x: f64) f64 = {
	const MAXLOG = 8.8029691931113054295988e+01; // log(2**127)
	let z = absf64(x);
	if (z > 0.5f64 * MAXLOG) {
		if (x < 0f64) {
			return -1f64;
		};
		return 1f64;
	} else if (z >= 0.625f64) {
		const s = expf64(2f64 * z);
		z = 1f64 - 2f64 / (s + 1f64);
		if (x < 0f64) {
			z = -z;
		};
	} else {
		if (x == 0f64) {
			return x;
		};
		const s = x * x;
		z = x + x * s * ((TANH_P[0] * s + TANH_P[1]) * s + TANH_P[2]) /
			(((s + TANH_Q[0]) * s + TANH_Q[1]) * s + TANH_Q[2]);
	};
	return z;
};

// asinh(x)
// Method :
//	Based on
//	        asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
//	we have
//	asinh(x) := x  if  1+x*x=1,
//	         := sign(x)*(log(x)+ln2)) for large |x|, else
//	         := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
//	         := sign(x)*log1p(|x| + x**2/(1 + sqrt(1+x**2)))
//

// Returns the inverse hyperbolic sine of x.
export fn asinhf64(x: f64) f64 = {
	const NEAR_ZERO = 1f64 / ((1i64 << 28): f64);
	const LARGE = ((1i64 << 28): f64);

	if (isnan(x) || isinf(x)) {
		return x;
	};

	let is_negative = false;
	if (x < 0f64) {
		x = -x;
		is_negative = true;
	};

	let temp = 0f64;

	if (x > LARGE) {
		// |x| > 2**28
		temp = logf64(x) + LN_2;
	} else if (x > 2f64) {
		// 2**28 > |x| > 2.0
		temp = logf64(2f64 * x +
			1f64 / (sqrtf64(x * x + 1f64) + x));
	} else if (x < NEAR_ZERO) {
		// |x| < 2**-28
		temp = x;
	} else {
		// 2.0 > |x| > 2**-28
		temp = log1pf64(x + x * x /
			(1f64 + sqrtf64(1f64 + x * x)));
	};
	if (is_negative) {
		temp = -temp;
	};
	return temp;
};

// __ieee754_acosh(x)
// Method :
//	Based on
//	        acosh(x) = log [ x + sqrt(x*x-1) ]
//	we have
//	        acosh(x) := log(x)+ln2,	if x is large; else
//	        acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
//	        acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
//
// Special cases:
//	acosh(x) is NaN with signal if x<1.
//	acosh(NaN) is NaN without signal.
//

// Returns the inverse hyperbolic cosine of x.
export fn acoshf64(x: f64) f64 = {
	const LARGE = ((1i64 << 28): f64);

	if (x < 1f64 || isnan(x)) {
		return NAN;
	} else if (x == 1f64) {
		return 0f64;
	} else if (x >= LARGE) {
		// x > 2**28
		return logf64(x) + LN_2;
	} else if (x > 2f64) {
		// 2**28 > x > 2
		return logf64(2f64 * x - 1f64 /
			(x + sqrtf64(x * x - 1f64)));
	};
	const t = x - 1f64;
	// 2 >= x > 1
	return log1pf64(t + sqrtf64(2f64 * t + t * t));
};

// __ieee754_atanh(x)
// Method :
//	1. Reduce x to positive by atanh(-x) = -atanh(x)
//	2. For x>=0.5
//	            1              2x                          x
//	atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
//	            2             1 - x                      1 - x
//
//	For x<0.5
//	atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
//
// Special cases:
//	atanh(x) is NaN if |x| > 1 with signal;
//	atanh(NaN) is that NaN with no signal;
//	atanh(+-1) is +-INF with signal.
//

// Returns the inverse hyperbolic tangent of x.
export fn atanhf64(x: f64) f64 = {
	const NEAR_ZERO = 1f64 / ((1i64 << 28): f64);

	if (x < -1f64 || x > 1.064) {
		return NAN;
	} else if (isnan(x)) {
		return NAN;
	} else if (x == 1f64) {
		return INF;
	} else if (x == -1f64) {
		return -INF;
	};

	let is_negative = false;

	if (x < 0f64) {
		x = -x;
		is_negative = true;
	};

	let temp = 0f64;

	if (x < NEAR_ZERO) {
		temp = x;
	} else if (x < 0.5f64) {
		temp = x + x;
		temp = 0.5f64 * log1pf64(temp + temp * x / (1f64 - x));
	} else {
		temp = 0.5f64 * log1pf64((x + x) / (1f64 - x));
	};
	if (is_negative) {
		temp = -temp;
	};
	return temp;
};

// Returns the arctangent, in radians, of y / x.
export fn atan2f64(y: f64, x: f64) f64 = {
	if (isnan(y) || isnan(x)) {
		return NAN;
	} else if (y == 0f64) {
		x = if (x >= 0f64 && signf64(x) > 0) 0f64 else PI;
		return copysignf64(x, y);
	} else if (x == 0f64) {
		return copysignf64(PI / 2f64, y);
	} else if (isinf(x)) {
		if (signf64(x) > 0) {
			x = if (isinf(y)) PI / 4f64 else 0f64;
			return copysignf64(x, y);
		} else {
			x = if (isinf(y)) 3f64 * PI / 4f64 else PI;
			return copysignf64(x, y);
		};
	} else if (isinf(y)) {
		return copysignf64(PI / 2f64, y);
	};

	const q = atanf64(y / x);
	if (x < 0f64) {
		return if (q <= 0f64) q + PI else q - PI;
	};
	return q;
};

// Returns the square root of a*a + b*b, taking care to avoid unnecessary
// overflow and underflow.
export fn hypotf64(a: f64, b: f64) f64 = {
	if (isinf(a) || isinf(b)) {
		return INF;
	} else if (isnan(a) || isnan(b)) {
		return NAN;
	};
	a = absf64(a);
	b = absf64(b);
	if (a < b) {
		const temp = a;
		a = b;
		b = temp;
	};
	if (a == 0f64) {
		return 0f64;
	};
	b = b / a;
	return a * sqrtf64(1f64 + b * b);
};