File: README.md

package info (click to toggle)
harmonypy 0.0.10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,092 kB
  • sloc: python: 393; makefile: 5
file content (96 lines) | stat: -rw-r--r-- 3,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
harmonypy
=========

[![Latest PyPI Version][pb]][pypi] [![PyPI Downloads][db]][pypi] [![tests][gb]][yml]  [![DOI](https://zenodo.org/badge/229105533.svg)](https://zenodo.org/badge/latestdoi/229105533)

[gb]: https://github.com/slowkow/harmonypy/actions/workflows/python-package.yml/badge.svg
[yml]: https://github.com/slowkow/harmonypy/actions/workflows/python-package.yml
[pb]: https://img.shields.io/pypi/v/harmonypy.svg
[pypi]: https://pypi.org/project/harmonypy/

[db]: https://img.shields.io/pypi/dm/harmonypy?label=pypi%20downloads

Harmony is an algorithm for integrating multiple high-dimensional datasets.

harmonypy is a port of the [harmony] R package by [Ilya Korsunsky].

Example
-------

<p align="center">
  <img src="https://i.imgur.com/lqReopf.gif">
</p>

This animation shows the Harmony alignment of three single-cell RNA-seq datasets from different donors.

[→ How to make this animation.](https://slowkow.com/notes/harmony-animation/)

Installation
------------

This package has been tested with Python 3.7.

Use [pip] to install:

```bash
pip install harmonypy
```

Usage
-----

Here is a brief example using the data that comes with the R package:

```python
# Load data
import pandas as pd

meta_data = pd.read_csv("data/meta.tsv.gz", sep = "\t")
vars_use = ['dataset']

# meta_data
#
#                  cell_id dataset  nGene  percent_mito cell_type
# 0    half_TGAAATTGGTCTAG    half   3664      0.017722    jurkat
# 1    half_GCGATATGCTGATG    half   3858      0.029228      t293
# 2    half_ATTTCTCTCACTAG    half   4049      0.015966    jurkat
# 3    half_CGTAACGACGAGAG    half   3443      0.020379    jurkat
# 4    half_ACGCCTTGTTTACC    half   2813      0.024774      t293
# ..                   ...     ...    ...           ...       ...
# 295  t293_TTACGTACGACACT    t293   4152      0.033997      t293
# 296  t293_TAGAATTGTTGGTG    t293   3097      0.021769      t293
# 297  t293_CGGATAACACCACA    t293   3157      0.020411      t293
# 298  t293_GGTACTGAGTCGAT    t293   2685      0.027846      t293
# 299  t293_ACGCTGCTTCTTAC    t293   3513      0.021240      t293

data_mat = pd.read_csv("data/pcs.tsv.gz", sep = "\t")
data_mat = np.array(data_mat)

# data_mat[:5,:5]
#
# array([[ 0.0071695 , -0.00552724, -0.0036281 , -0.00798025,  0.00028931],
#        [-0.011333  ,  0.00022233, -0.00073589, -0.00192452,  0.0032624 ],
#        [ 0.0091214 , -0.00940727, -0.00106816, -0.0042749 , -0.00029096],
#        [ 0.00866286, -0.00514987, -0.0008989 , -0.00821785, -0.00126997],
#        [-0.00953977,  0.00222714, -0.00374373, -0.00028554,  0.00063737]])

# meta_data.shape # 300 cells, 5 variables
# (300, 5)
#
# data_mat.shape  # 300 cells, 20 PCs
# (300, 20)

# Run Harmony
import harmonypy as hm
ho = hm.run_harmony(data_mat, meta_data, vars_use)

# Write the adjusted PCs to a new file.
res = pd.DataFrame(ho.Z_corr)
res.columns = ['X{}'.format(i + 1) for i in range(res.shape[1])]
res.to_csv("data/adj.tsv.gz", sep = "\t", index = False)
```

[harmony]: https://github.com/immunogenomics/harmony
[Ilya Korsunsky]: https://github.com/ilyakorsunsky
[pip]: https://pip.readthedocs.io/