1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
Common formula
==============
gravity
-------
#. Newton's gravitational law
================ ============================ ======================
symbol description unit
================ ============================ ======================
:math:`g` gravity :math:`\frac{m}{s^2}`
:math:`g_{surf}` gravity at earth surface :math:`\frac{m}{s^2}`
:math:`h` height above surface :math:`m`
:math:`R_{surf}` earth radius at surface :math:`m`
================ ============================ ======================
.. math::
g = g_{surf}\left(\frac{R_{surf}}{R_{surf} + h}\right)^2
#. normal gravity at ellipsoid surface
This is the WGS84 ellipsoidal gravity formula as taken from NIMA TR8350.2
================ ===================== =====================
symbol name unit
================ ===================== =====================
:math:`a` WGS84 semi-major axis :math:`m`
:math:`b` WGS84 semi-minor axis :math:`m`
:math:`e` eccentricity :math:`m`
:math:`g_{e}` gravity at equator :math:`\frac{m}{s^2}`
:math:`g_{p}` gravity at poles :math:`\frac{m}{s^2}`
:math:`g_{surf}` gravity at surface :math:`\frac{m}{s^2}`
:math:`\phi` latitude :math:`degN`
================ ===================== =====================
.. math::
:nowrap:
\begin{eqnarray}
e^2 & = & \frac{a^2-b^2}{a^2} \\
k & = & \frac{bg_{p} - ag_{e}}{ag_{e}} \\
g_{surf} & = & g_{e}\frac{1 + k {\sin}^2(\frac{\pi}{180}\phi)}{\sqrt{1 - e^2{\sin}^2(\frac{\pi}{180}\phi)}} \\
g_{surf} & = & 9.7803253359 \frac{1 + 0.00193185265241{\sin}^2(\frac{\pi}{180}\phi)}
{\sqrt{1 - 0.00669437999013{\sin}^2(\frac{\pi}{180}\phi)}}
\end{eqnarray}
#. normal gravity above ellipsoid surface
This is the WGS84 ellipsoidal gravity formula as taken from NIMA TR8350.2
================ ==================================== =======================
symbol name unit
================ ==================================== =======================
:math:`a` WGS84 semi-major axis :math:`m`
:math:`b` WGS84 semi-minor axis :math:`m`
:math:`f` WGS84 flattening :math:`m`
:math:`g` gravity :math:`\frac{m}{s^2}`
:math:`g_{surf}` gravity at the ellipsoid surface :math:`\frac{m}{s^2}`
:math:`GM` WGS84 earth's gravitational constant :math:`\frac{m^3}{s^2}`
:math:`z` altitude :math:`m`
:math:`\phi` latitude :math:`degN`
:math:`\omega` WGS84 earth angular velocity :math:`rad/s`
================ ==================================== =======================
The formula used is the one based on the truncated Taylor series expansion:
.. math::
:nowrap:
\begin{eqnarray}
m & = & \frac{\omega^2a^2b}{GM} \\
g & = & g_{surf} \left[ 1 - \frac{2}{a}\left(1+f+m-2f{\sin}^2(\frac{\pi}{180}\phi)\right)z + \frac{3}{a^2}z^2 \right] \\
\end{eqnarray}
geopotential height
-------------------
================ ============================ ======================
symbol description unit
================ ============================ ======================
:math:`g` gravity :math:`\frac{m}{s^2}`
:math:`g_{0}` mean earth gravity :math:`\frac{m}{s^2}`
:math:`g_{surf}` gravity at earth surface :math:`\frac{m}{s^2}`
:math:`p` pressure :math:`Pa`
:math:`R_{surf}` earth radius at surface :math:`m`
:math:`h` height above surface :math:`m`
:math:`h_{g}` geopotential height :math:`m`
:math:`\phi` latitude :math:`degN`
:math:`\rho` mass density :math:`\frac{kg}{m^3}`
================ ============================ ======================
The geopotential height allows the gravity in the hydrostatic equation
.. math::
dp = - \rho g dh
to be replaced by a constant gravity
.. math::
dp = - \rho g_{0} dh_{g}
providing
.. math::
dh_{g} = \frac{g}{g_{0}}dh
With Newton's gravitational law this becomes
.. math::
dh_{g} = \frac{g_{surf}}{g_{0}}\left(\frac{R_{surf}}{R_{surf} + h}\right)^2dh
And integrating this, considering that :math:`h=0` and :math:`h_{g}=0` at the surface, results in
.. math::
h_{g} = \frac{g_{surf}}{g_{0}}\frac{R_{surf}h}{R_{surf} + h}
.. math::
h = \frac{g_{0}R_{surf}h_{g}}{g_{surf}R_{surf}-g_{0}h_{g}}
gas constant
------------
=========== ====================== ================================
symbol name unit
=========== ====================== ================================
:math:`k` Boltzmann constant :math:`\frac{kg m^2}{K s^2}`
:math:`N_A` Avogadro constant :math:`\frac{1}{mol}`
:math:`R` universal gas constant :math:`\frac{kg m^2}{K mol s^2}`
=========== ====================== ================================
Relation between Boltzmann constant, universal gas constant, and Avogadro constant:
.. math::
k = \frac{R}{N_A}
ideal gas law
-------------
========= ====================== ================================
symbol name unit
========= ====================== ================================
:math:`k` Boltzmann constant :math:`\frac{kg m^2}{K s^2}`
:math:`N` amount of substance :math:`molec`
:math:`p` pressure :math:`Pa`
:math:`R` universal gas constant :math:`\frac{kg m^2}{K mol s^2}`
:math:`T` temperature :math:`K`
:math:`V` volume :math:`m^3`
========= ====================== ================================
.. math::
pV = \frac{NRT}{N_{A}} = NkT
barometric formula
------------------
=============== ======================= ================================
symbol name unit
=============== ======================= ================================
:math:`g` gravity :math:`\frac{m}{s^2}`
:math:`g_{0}` mean earth gravity :math:`\frac{m}{s^2}`
:math:`k` Boltzmann constant :math:`\frac{kg m^2}{K s^2}`
:math:`M_{air}` molar mass of total air :math:`\frac{g}{mol}`
:math:`N` amount of substance :math:`molec`
:math:`N_A` Avogadro constant :math:`\frac{1}{mol}`
:math:`p` pressure :math:`Pa`
:math:`R` universal gas constant :math:`\frac{kg m^2}{K mol s^2}`
:math:`T` temperature :math:`K`
:math:`V` volume :math:`m^3`
:math:`z` altitude :math:`m`
:math:`z_{g}` geopotential height :math:`m`
:math:`\phi` latitude :math:`degN`
:math:`\rho` mass density :math:`\frac{kg}{m^3}`
=============== ======================= ================================
From the ideal gas law we have:
.. math::
p = \frac{NkT}{V} = \frac{10^{-3}NM_{air}}{VN_{a}}\frac{kTN_{a}}{10^{-3}M_{air}} = \rho\frac{RT}{10^{-3}M_{air}}
And from the hydrostatic assumption we get:
.. math::
dp = - \rho g dz
Dividing :math:`dp` by `p` we get:
.. math::
\frac{dp}{p} = -\frac{10^{-3}M_{air}\rho g dz}{\rho RT} = -\frac{10^{-3}M_{air}gdz}{RT}
Integrating this expression from one pressure level to the next we get:
.. math::
p(i+1) = p(i)e^{-\int^{z(i+1)}_{z(i)}\frac{10^{-3}M_{air}g}{RT}dz}
We can approximate this further by using an average value of the height dependent quantities
:math:`M_{air}`, :math:`g` and :math:`T` for the integration over the range :math:`[z(i),z(i+1)]`.
This gives:
.. math::
:nowrap:
\begin{eqnarray}
g & = & g(\phi,\frac{z(i)+z(i+1)}{2}) \\
p(i+1) & = & p(i)e^{-10^{-3}\frac{M_{air}(i)+M_{air}(i+1)}{2}\frac{2}{T(i)+T(i+1)}\frac{g}{R}\left(z(i+1)-z(i)\right)} \\
& = & p(i)e^{-10^{-3}\frac{M_{air}(i)+M_{air}(i+1)}{T(i)+T(i+1)}\frac{g}{R}\left(z(i+1)-z(i)\right)}
\end{eqnarray}
When using geopotential height the formula is the same except that :math:`g=g_{0}` at all levels:
.. math::
p(i+1) = p(i)e^{-10^{-3}\frac{M_{air}(i)+M_{air}(i+1)}{T(i)+T(i+1)}\frac{g_{0}}{R}\left(z_{g}(i+1)-z_{g}(i)\right)}
mass density
------------
=============== ======================= ======================
symbol name unit
=============== ======================= ======================
:math:`N` amount of substance :math:`molec`
:math:`N_A` Avogadro constant :math:`\frac{1}{mol}`
:math:`M_{air}` molar mass of total air :math:`\frac{g}{mol}`
:math:`V` volume :math:`m^3`
:math:`\rho` mass density :math:`\frac{kg}{m^3}`
=============== ======================= ======================
.. math::
\rho = \frac{10^{-3}NM_{air}}{VN_{a}}
number density
--------------
========= =================== =========================
symbol name unit
========= =================== =========================
:math:`n` number density :math:`\frac{molec}{m^3}`
:math:`N` amount of substance :math:`molec`
:math:`V` volume :math:`m^3`
========= =================== =========================
.. math::
n = \frac{N}{V}
dry air vs. total air
---------------------
======================= =========================== =========================
symbol name unit
======================= =========================== =========================
:math:`n` number density of total air :math:`\frac{molec}{m^3}`
:math:`n_{dry\_air}` number density of dry air :math:`\frac{molec}{m^3}`
:math:`n_{H_{2}O}` number density of H2O :math:`\frac{molec}{m^3}`
:math:`M_{air}` molar mass of total air :math:`\frac{g}{mol}`
:math:`M_{dry\_air}` molar mass of dry air :math:`\frac{g}{mol}`
:math:`M_{H_{2}O}` molar mass of H2O :math:`\frac{g}{mol}`
:math:`\rho` mass density of total air :math:`\frac{kg}{m^3}`
:math:`\rho_{dry\_air}` mass density of dry air :math:`\frac{kg}{m^3}`
:math:`\rho_{H_{2}O}` mass density of H2O :math:`\frac{kg}{m^3}`
======================= =========================== =========================
.. math::
:nowrap:
\begin{eqnarray}
n & = & n_{dry\_air} + n_{H_{2}O} \\
M_{air}n & = & M_{dry\_air}n_{dry\_air} + M_{H_{2}O}n_{H_{2}O} \\
\rho & = & \rho_{dry\_air} + \rho_{H_{2}O} \\
\end{eqnarray}
virtual temperature
-------------------
==================== ======================== ================================
symbol name unit
==================== ======================== ================================
:math:`k` Boltzmann constant :math:`\frac{kg m^2}{K s^2}`
:math:`M_{air}` molar mass of total air :math:`\frac{g}{mol}`
:math:`M_{dry\_air}` molar mass of dry air :math:`\frac{g}{mol}`
:math:`M_{H_{2}O}` molar mass of H2O :math:`\frac{g}{mol}`
:math:`N` amount of substance :math:`molec`
:math:`N_A` Avogadro constant :math:`\frac{1}{mol}`
:math:`p` pressure :math:`Pa`
:math:`p_{dry\_air}` dry air partial pressure :math:`Pa`
:math:`p_{H_{2}O}` H2O partial pressure :math:`Pa`
:math:`R` universal gas constant :math:`\frac{kg m^2}{K mol s^2}`
:math:`T` temperature :math:`K`
:math:`T_{v}` virtual temperature :math:`K`
:math:`V` volume :math:`m^3`
==================== ======================== ================================
From the ideal gas law we have:
.. math::
p = \frac{NkT}{V} = \frac{10^{-3}NM_{air}}{VN_{a}}\frac{kTN_{a}}{10^{-3}M_{air}} = \rho \frac{RT}{10^{-3}M_{air}}
The virtual temperature allows us to use the dry air molar mass in this equation:
.. math::
p = \rho\frac{RT_{v}}{10^{-3}M_{dry\_air}}
This gives:
.. math::
T_{v} = \frac{M_{dry\_air}}{M_{air}}T
volume mixing ratio
-------------------
====================== =============================== =========================
symbol name unit
====================== =============================== =========================
:math:`n` number density of total air :math:`\frac{molec}{m^3}`
:math:`n_{dry\_air}` number density of dry air :math:`\frac{molec}{m^3}`
:math:`n_{H_{2}O}` number density of H2O :math:`\frac{molec}{m^3}`
:math:`n_{x}` number density of quantity x :math:`\frac{molec}{m^3}`
:math:`\nu_{x}` volume mixing ratio of quantity :math:`ppv`
x with regard to total air
:math:`\bar{\nu}_{x}` volume mixing ratio of quantity :math:`ppv`
x with regard to dry air
====================== =============================== =========================
.. math::
:nowrap:
\begin{eqnarray}
\nu_{x} & = & \frac{n_{x}}{n} \\
\bar{\nu}_{x} & = & \frac{n_{x}}{n_{dry\_air}} \\
\nu_{dry\_air} & = & \frac{n_{dry\_air}}{n} =
\frac{n - n_{H_{2}O}}{n} = 1 - \nu_{H_{2}O} \\
\nu_{air} & = & \frac{n}{n} = 1 \\
\bar{\nu}_{dry\_air} & = & \frac{n_{dry\_air}}{n_{dry\_air}} = 1 \\
\bar{\nu}_{H_{2}O} & = & \frac{n_{H_{2}O}}{n_{dry\_air}} =
\frac{\nu_{H_{2}O}}{\nu_{dry\_air}} = \frac{\nu_{H_{2}O}}{1 - \nu_{H_{2}O}} \\
\nu_{H_{2}O} & = & \frac{\bar{\nu}_{H_{2}O}}{1 + \bar{\nu}_{H_{2}O}}
\end{eqnarray}
mass mixing ratio
-----------------
===================== =============================== =========================
symbol name unit
===================== =============================== =========================
:math:`M_{air}` molar mass of total air :math:`\frac{g}{mol}`
:math:`M_{dry\_air}` molar mass of dry air :math:`\frac{g}{mol}`
:math:`M_{x}` molar mass of quantity x :math:`\frac{g}{mol}`
:math:`n` number density of total air :math:`\frac{molec}{m^3}`
:math:`n_{dry\_air}` number density of dry air :math:`\frac{molec}{m^3}`
:math:`n_{H_{2}O}` number density of H2O :math:`\frac{molec}{m^3}`
:math:`n_{x}` number density of quantity x :math:`\frac{molec}{m^3}`
:math:`q_{x}` mass mixing ratio of quantity x :math:`\frac{kg}{kg}`
with regard to total air
:math:`\bar{q}_{x}` mass mixing ratio of quantity x :math:`\frac{kg}{kg}`
with regard to dry air
:math:`\nu_{x}` volume mixing ratio of quantity :math:`ppv`
x with regard to total air
:math:`\bar{\nu}_{x}` volume mixing ratio of quantity :math:`ppv`
x with regard to dry air
===================== =============================== =========================
.. math::
:nowrap:
\begin{eqnarray}
q_{x} & = & \frac{n_{x}M_{x}}{nM_{air}} = \nu_{x}\frac{M_{x}}{M_{air}} \\
\bar{q}_{x} & = & \frac{n_{x}M_{x}}{n_{dry\_air}M_{dry\_air}} = \bar{\nu}_{x}\frac{M_{x}}{M_{dry\_air}} \\
q_{dry\_air} & = & \frac{n_{dry\_air}M_{dry\_air}}{nM_{air}} =
\frac{nM_{air} - n_{H_{2}O}M_{H_{2}O}}{nM_{air}} = 1 - q_{H_{2}O} \\
q_{air} & = & \frac{nM_{air}}{nM_{air}} = 1 \\
\bar{q}_{dry\_air} & = & \frac{n_{dry\_air}M_{dry\_air}}{n_{dry\_air}M_{dry\_air}} = 1 \\
\bar{q}_{H_{2}O} & = & \frac{n_{H_{2}O}M_{H_{2}O}}{n_{dry\_air}M_{dry\_air}} =
\frac{q_{H_{2}O}}{q_{dry\_air}} = \frac{q_{H_{2}O}}{1 - q_{H_{2}O}} \\
q_{H_{2}O} & = & \frac{\bar{q}_{H_{2}O}}{1 + \bar{q}_{H_{2}O}}
\end{eqnarray}
molar mass of total air
-----------------------
#. molar mass of total air from H2O volume mixing ratio
==================== =========================== =========================
symbol name unit
==================== =========================== =========================
:math:`M_{air}` molar mass of total air :math:`\frac{g}{mol}`
:math:`M_{dry\_air}` molar mass of dry air :math:`\frac{g}{mol}`
:math:`M_{H_{2}O}` molar mass of H2O :math:`\frac{g}{mol}`
:math:`n` number density of total air :math:`\frac{molec}{m^3}`
:math:`n_{dry\_air}` number density of dry air :math:`\frac{molec}{m^3}`
:math:`n_{H_{2}O}` number density of H2O :math:`\frac{molec}{m^3}`
:math:`\nu_{H_{2}O}` volume mixing ratio of H2O :math:`ppv`
==================== =========================== =========================
.. math::
:nowrap:
\begin{eqnarray}
M_{air} & = & \frac{M_{dry\_air}n_{dry\_air} + M_{H_{2}O}n_{H_{2}O}}{n} \\
& = & M_{dry\_air}\left(1 - \nu_{H_{2}O}\right) + M_{H_{2}O}\nu_{H_{2}O}
\end{eqnarray}
#. molar mass of total air from H2O mass mixing ratio
==================== =========================== =========================
symbol name unit
==================== =========================== =========================
:math:`M_{air}` molar mass of total air :math:`\frac{g}{mol}`
:math:`M_{dry\_air}` molar mass of dry air :math:`\frac{g}{mol}`
:math:`M_{H_{2}O}` molar mass of H2O :math:`\frac{g}{mol}`
:math:`n` number density of total air :math:`\frac{molec}{m^3}`
:math:`n_{dry\_air}` number density of dry air :math:`\frac{molec}{m^3}`
:math:`n_{H_{2}O}` number density of H2O :math:`\frac{molec}{m^3}`
:math:`q_{H_{2}O}` mass mixing ratio of H2O :math:`\frac{kg}{kg}`
:math:`\nu_{H_{2}O}` volume mixing ratio of H2O :math:`\frac{kg}{kg}`
==================== =========================== =========================
.. math::
:nowrap:
\begin{eqnarray}
M_{air} & = & M_{dry\_air}\left(1 - \nu_{H_{2}O}\right) + M_{H_{2}O}\nu_{H_{2}O} \\
& = & M_{dry\_air}\left(1 - \frac{M_{air}}{M_{H_{2}O}}q_{H_{2}O}\right) + M_{air}q_{H_{2}O} \\
& = & \frac{M_{dry\_air}}{1 + \frac{M_{dry\_air}}{M_{H_{2}O}}q_{H_{2}O} - q_{H_{2}O}} \\
& = & \frac{M_{H_{2}O}M_{dry\_air}}{M_{H_{2}O} + M_{dry\_air}q_{H_{2}O} - M_{H_{2}O}q_{H_{2}O}} \\
& = & \frac{M_{H_{2}O}M_{dry\_air}}{\left(1-q_{H_{2}O}\right)M_{H_{2}O} + q_{H_{2}O}M_{dry\_air}} \\
\end{eqnarray}
partial pressure
----------------
===================== =============================== ===========
symbol name unit
===================== =============================== ===========
:math:`p` total pressure :math:`Pa`
:math:`p_{x}` partial pressure of quantity :math:`Pa`
:math:`\nu_{x}` volume mixing ratio of quantity :math:`ppv`
x with regard to total air
:math:`\bar{\nu}_{x}` volume mixing ratio of quantity :math:`ppv`
x with regard to dry air
===================== =============================== ===========
.. math::
:nowrap:
\begin{eqnarray}
p_{x} & = & \nu_{x}p \\
p_{x} & = & \bar{\nu}_{x}p_{dry\_air} \\
p_{x} & = & N_{x}kT
\end{eqnarray}
saturated water vapor pressure
------------------------------
============= =============================== ===========
symbol name unit
============= =============================== ===========
:math:`e_{w}` saturated water vapor pressure :math:`Pa`
:math:`T` temperature :math:`K`
============= =============================== ===========
This is the August-Roche-Magnus formula for the saturated water vapour pressure
.. math::
e_{w} = 610.94e^{\frac{17.625(T-273.15)}{(T-273.15)+243.04}}
|