File: harp-dimension-mask.c

package info (click to toggle)
harp 1.5%2Bdata-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 54,032 kB
  • sloc: xml: 286,510; ansic: 143,710; yacc: 1,910; python: 913; makefile: 600; lex: 574; sh: 69
file content (648 lines) | stat: -rw-r--r-- 23,165 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/*
 * Copyright (C) 2015-2018 S[&]T, The Netherlands.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "harp-dimension-mask.h"
#include "harp-internal.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>

int harp_dimension_mask_new(int num_dimensions, const long *dimension, harp_dimension_mask **new_dimension_mask)
{
    int i;
    harp_dimension_mask *dimension_mask;

    dimension_mask = (harp_dimension_mask *)malloc(sizeof(harp_dimension_mask));
    if (dimension_mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       sizeof(harp_dimension_mask), __FILE__, __LINE__);
        return -1;
    }

    dimension_mask->num_dimensions = num_dimensions;
    dimension_mask->mask = NULL;
    dimension_mask->num_elements = 1;
    dimension_mask->masked_dimension_length = (num_dimensions == 0 ? 1 : dimension[num_dimensions - 1]);
    for (i = 0; i < num_dimensions; i++)
    {
        dimension_mask->dimension[i] = dimension[i];
        dimension_mask->num_elements *= dimension[i];
    }

    dimension_mask->mask = malloc((size_t)dimension_mask->num_elements * sizeof(uint8_t));
    if (dimension_mask->mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       dimension_mask->num_elements * sizeof(uint8_t), __FILE__, __LINE__);
        harp_dimension_mask_delete(dimension_mask);
        return -1;
    }

    /* Initialize the mask to all 1's. */
    for (i = 0; i < dimension_mask->num_elements; i++)
    {
        dimension_mask->mask[i] = 1;
    }

    *new_dimension_mask = dimension_mask;
    return 0;
}

void harp_dimension_mask_delete(harp_dimension_mask *dimension_mask)
{
    if (dimension_mask != NULL)
    {
        if (dimension_mask->mask != NULL)
        {
            free(dimension_mask->mask);
        }

        free(dimension_mask);
    }
}

int harp_dimension_mask_copy(const harp_dimension_mask *other_dimension_mask, harp_dimension_mask **new_dimension_mask)
{
    harp_dimension_mask *dimension_mask;
    int i;

    assert(other_dimension_mask != NULL);
    assert(new_dimension_mask != NULL);

    dimension_mask = (harp_dimension_mask *)malloc(sizeof(harp_dimension_mask));
    if (dimension_mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       sizeof(harp_dimension_mask), __FILE__, __LINE__);
        return -1;
    }

    dimension_mask->num_dimensions = other_dimension_mask->num_dimensions;
    for (i = 0; i < dimension_mask->num_dimensions; i++)
    {
        dimension_mask->dimension[i] = other_dimension_mask->dimension[i];
    }
    dimension_mask->num_elements = other_dimension_mask->num_elements;
    dimension_mask->masked_dimension_length = other_dimension_mask->masked_dimension_length;
    dimension_mask->mask = NULL;

    dimension_mask->mask = (uint8_t *)malloc(dimension_mask->num_elements * sizeof(uint8_t));
    if (dimension_mask->mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       dimension_mask->num_elements * sizeof(uint8_t), __FILE__, __LINE__);
        return -1;
    }

    memcpy(dimension_mask->mask, other_dimension_mask->mask, dimension_mask->num_elements * sizeof(uint8_t));

    *new_dimension_mask = dimension_mask;
    return 0;
}

int harp_dimension_mask_set_new(harp_dimension_mask_set **new_dimension_mask_set)
{
    harp_dimension_mask_set *dimension_mask_set;
    int i;

    dimension_mask_set = (harp_dimension_mask_set *)malloc(HARP_NUM_DIM_TYPES * sizeof(harp_dimension_mask *));
    if (dimension_mask_set == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       HARP_NUM_DIM_TYPES * sizeof(harp_dimension_mask *), __FILE__, __LINE__);
        return -1;
    }

    for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
    {
        dimension_mask_set[i] = NULL;
    }

    *new_dimension_mask_set = dimension_mask_set;
    return 0;
}

void harp_dimension_mask_set_delete(harp_dimension_mask_set *dimension_mask_set)
{
    if (dimension_mask_set != NULL)
    {
        int i;

        for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
        {
            harp_dimension_mask_delete(dimension_mask_set[i]);
        }

        free(dimension_mask_set);
    }
}

int harp_dimension_mask_fill_true(harp_dimension_mask *dimension_mask)
{
    assert(dimension_mask != NULL && dimension_mask->num_elements > 0 && dimension_mask->mask != NULL);

    memset(dimension_mask->mask, 1, dimension_mask->num_elements);

    dimension_mask->masked_dimension_length = 1;
    if (dimension_mask->num_elements > 0)
    {
        dimension_mask->masked_dimension_length *= dimension_mask->dimension[dimension_mask->num_dimensions - 1];
    }

    return 0;
}

int harp_dimension_mask_fill_false(harp_dimension_mask *dimension_mask)
{
    assert(dimension_mask != NULL && dimension_mask->num_elements > 0 && dimension_mask->mask != NULL);

    memset(dimension_mask->mask, 0, dimension_mask->num_elements * sizeof(uint8_t));
    dimension_mask->masked_dimension_length = 0;

    return 0;
}

static long count(long num_elements, const uint8_t *mask)
{
    const uint8_t *mask_end;
    long count;

    count = 0;
    for (mask_end = mask + num_elements; mask != mask_end; mask++)
    {
        if (*mask)
        {
            count++;
        }
    }

    return count;
}

int harp_dimension_mask_update_masked_length(harp_dimension_mask *dimension_mask)
{
    long num_blocks;
    long num_block_elements;
    long max_masked_length;
    long i;

    assert(dimension_mask != NULL);
    assert(dimension_mask->num_elements == 0 || dimension_mask->mask != NULL);

    num_blocks = (dimension_mask->num_dimensions <= 1 ? 1 : dimension_mask->dimension[0]);
    num_block_elements = dimension_mask->num_elements / num_blocks;

    max_masked_length = 0;
    for (i = 0; i < num_blocks; i++)
    {
        long masked_length;

        masked_length = count(num_block_elements, &dimension_mask->mask[i * num_block_elements]);
        if (masked_length > max_masked_length)
        {
            max_masked_length = masked_length;
        }
    }

    dimension_mask->masked_dimension_length = max_masked_length;
    return 0;
}

int harp_dimension_mask_outer_product(const harp_dimension_mask *row_mask, const harp_dimension_mask *col_mask,
                                      harp_dimension_mask **new_dimension_mask)
{
    harp_dimension_mask *dimension_mask;
    long i;

    assert(row_mask != NULL && row_mask->num_dimensions == 1 && row_mask->mask != NULL);
    assert(col_mask != NULL && col_mask->num_dimensions == 1 && col_mask->mask != NULL);
    assert(new_dimension_mask != NULL);

    dimension_mask = (harp_dimension_mask *)malloc(sizeof(harp_dimension_mask));
    if (dimension_mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       sizeof(harp_dimension_mask), __FILE__, __LINE__);
        return -1;
    }

    dimension_mask->num_dimensions = 2;
    dimension_mask->dimension[0] = row_mask->num_elements;
    dimension_mask->dimension[1] = col_mask->num_elements;
    dimension_mask->num_elements = dimension_mask->dimension[0] * dimension_mask->dimension[1];

    if (row_mask->masked_dimension_length != 0)
    {
        dimension_mask->masked_dimension_length = col_mask->masked_dimension_length;
    }

    dimension_mask->mask = malloc(dimension_mask->num_elements * sizeof(uint8_t));
    if (dimension_mask->mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       dimension_mask->num_elements * sizeof(uint8_t), __FILE__, __LINE__);
        harp_dimension_mask_delete(dimension_mask);
        return -1;
    }

    for (i = 0; i < row_mask->num_elements; i++)
    {
        if (row_mask->mask[i])
        {
            memcpy(dimension_mask->mask + i * dimension_mask->dimension[1], col_mask->mask,
                   dimension_mask->dimension[1] * sizeof(uint8_t));
        }
        else
        {
            memset(dimension_mask->mask + i * dimension_mask->dimension[1], 0,
                   dimension_mask->dimension[1] * sizeof(uint8_t));
        }
    }

    *new_dimension_mask = dimension_mask;
    return 0;
}

int harp_dimension_mask_prepend_dimension(harp_dimension_mask *dimension_mask, long length)
{
    uint8_t *mask;
    long new_num_elements;
    long i;

    assert(dimension_mask != NULL);
    assert(length > 0);
    assert(dimension_mask->num_dimensions < 2);
    assert(dimension_mask->num_elements > 0);

    new_num_elements = dimension_mask->num_elements * length;
    mask = (uint8_t *)realloc((void *)dimension_mask->mask, new_num_elements * sizeof(uint8_t));
    if (mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       new_num_elements * sizeof(uint8_t), __FILE__, __LINE__);
        return -1;
    }
    dimension_mask->mask = mask;

    for (i = 1; i < length; i++)
    {
        memcpy(dimension_mask->mask + i * dimension_mask->num_elements, dimension_mask->mask,
               dimension_mask->num_elements * sizeof(uint8_t));
    }

    dimension_mask->num_elements = new_num_elements;
    dimension_mask->num_dimensions++;
    for (i = dimension_mask->num_dimensions - 1; i > 0; i--)
    {
        dimension_mask->dimension[i] = dimension_mask->dimension[i - 1];
    }
    dimension_mask->dimension[0] = length;

    /* The masked dimension length is not affected by prepending a dimension. */
    return 0;
}

int harp_dimension_mask_append_dimension(harp_dimension_mask *dimension_mask, long length)
{
    uint8_t *mask;
    long new_num_elements;
    long i;

    assert(dimension_mask != NULL);
    assert(length > 0);
    assert(dimension_mask->num_dimensions < 2);
    assert(dimension_mask->num_elements > 0);
    assert(dimension_mask->mask != NULL);

    new_num_elements = dimension_mask->num_elements * length;

    mask = (uint8_t *)realloc((void *)dimension_mask->mask, new_num_elements * sizeof(uint8_t));
    if (mask == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       new_num_elements * sizeof(uint8_t), __FILE__, __LINE__);
        return -1;
    }
    dimension_mask->mask = mask;

    for (i = dimension_mask->num_elements - 1; i >= 0; i--)
    {
        long j;

        for (j = 0; j < length; j++)
        {
            dimension_mask->mask[i * length + j] = dimension_mask->mask[i];
        }
    }

    dimension_mask->num_elements = new_num_elements;
    dimension_mask->dimension[dimension_mask->num_dimensions] = length;
    dimension_mask->num_dimensions++;

    /* Update the masked dimension length. If the original mask is zero everywhere, then the new mask will also be zero
     * everywhere and thus the masked dimension length equals zero for both the original and the new mask. Otherwise,
     * the masked dimension length of the new mask will be equal to the length of the appended dimension (independent of
     * the masked dimension length of the original mask). This is because any non-zero entry in the original mask will
     * be repeated along the appended dimension.
     */
    if (dimension_mask->masked_dimension_length != 0)
    {
        dimension_mask->masked_dimension_length = length;
    }

    return 0;
}

int harp_dimension_mask_reduce(const harp_dimension_mask *dimension_mask, int dim_index,
                               harp_dimension_mask **new_dimension_mask)
{
    harp_dimension_mask *reduced_dimension_mask;
    long num_groups;
    long num_blocks;
    long num_block_elements;
    long i;

    assert(dimension_mask != NULL && dimension_mask->num_elements != 0 && dimension_mask->mask != NULL);
    assert(dim_index >= 0 && dim_index < dimension_mask->num_dimensions);

    /* The mask is split into three parts:
     *     num_elements = num_groups * num_blocks * num_block_elements.
     *
     * Here, num_groups is the product of dimensions [0, dim_index), num_blocks is dimension[dim_index],
     * and num_block_elements is the product of dimensions (dim_index, num_dimensions).
     */

    /* Calculate the number of times we have to filter the indices (i.e. the product of the higher dimensions) */
    num_groups = 1;
    for (i = 0; i < dim_index; i++)
    {
        num_groups *= dimension_mask->dimension[i];
    }

    /* Calculate the number of blocks. */
    num_blocks = dimension_mask->dimension[dim_index];

    /* Calculate the number of elements per block. */
    num_block_elements = dimension_mask->num_elements / (num_groups * num_blocks);

    /* Allocate the reduced mask. */
    if (harp_dimension_mask_new(1, &num_blocks, &reduced_dimension_mask) != 0)
    {
        return -1;
    }

    /* Initialize the mask to false (harp_dimension_mask_new() initializes to true). */
    if (harp_dimension_mask_fill_false(reduced_dimension_mask) != 0)
    {
        harp_dimension_mask_delete(reduced_dimension_mask);
        return -1;
    }

    /* Reduce the mask along the specified dimension. For each index on the specified dimension, if any value in the
     * sub mask corresponding to this index is set to true, set the corresponding value in the reduced mask to true and
     * move to the next index.
     */
    for (i = 0; i < num_blocks; i++)
    {
        long j;

        for (j = 0; j < num_groups; j++)
        {
            const uint8_t *block_ptr;
            const uint8_t *block_end_ptr;

            block_ptr = dimension_mask->mask + (j * num_blocks + i) * num_block_elements;
            block_end_ptr = block_ptr + num_block_elements;

            for (; block_ptr != block_end_ptr; block_ptr++)
            {
                if (*block_ptr)
                {
                    break;
                }
            }

            if (block_ptr != block_end_ptr)
            {
                /* If any value in the block is set to true, the loop above will exit early, and therefore block_ptr
                 * will not equal block_end_ptr. In this case, the corresponding value in the reduced mask can be set
                 * to true and no additional blocks related to this index need to be examined.
                 */
                reduced_dimension_mask->mask[i] = 1;
                reduced_dimension_mask->masked_dimension_length++;
                break;
            }
        }
    }

    assert(count(reduced_dimension_mask->num_elements, reduced_dimension_mask->mask)
           == reduced_dimension_mask->masked_dimension_length);

    *new_dimension_mask = reduced_dimension_mask;
    return 0;
}

/**
 * Merge two dimension masks in place.
 *
 * Compute the intersection (logical and) of \p dimension_mask and \p merged_dimension_mask, storing the result in
 * \p merged_dimension_mask. The masks should either have the same number of dimensions, in which case \p dim_index will
 * be ignored, or \p dimension_mask should be one-dimensional, and \p merged_dimension_mask should have more two or more
 * dimensions. In the latter case, \p dim_index determines the dimension of \p merged_dimension_mask along which
 * \p dimension_mask is to be applied.
 *
 * \param  dimension_mask        Dimension mask to be merged into \p merged_dimension_mask.
 * \param  dim_index             Dimension along which \p dimension_mask should be applied; ignored if \p dimension_mask
 *                               and \p merged_dimension_mask have the same number of dimensions.
 * \param  merged_dimension_mask Dimension mask into which \p dimension_mask will be merged; this masked will be updated
 *                               in place.
 * \return
 *     \arg \c 0, Success.
 *     \arg \c -1, Error occurred (check #harp_errno).
 */
int harp_dimension_mask_merge(const harp_dimension_mask *dimension_mask, int dim_index,
                              harp_dimension_mask *merged_dimension_mask)
{
    long i;

    assert(dimension_mask != NULL);
    assert(dimension_mask->num_elements == 0 || dimension_mask->mask != NULL);
    assert(merged_dimension_mask != NULL);
    assert(merged_dimension_mask->num_elements == 0 || merged_dimension_mask->mask != NULL);

    if (dimension_mask->num_dimensions == merged_dimension_mask->num_dimensions)
    {
        assert(dimension_mask->num_elements == merged_dimension_mask->num_elements);

        for (i = 0; i < merged_dimension_mask->num_elements; i++)
        {
            merged_dimension_mask->mask[i] = dimension_mask->mask[i] && merged_dimension_mask->mask[i];
        }
    }
    else
    {
        long num_groups;
        long num_blocks;
        long num_block_elements;

        assert(dimension_mask->num_dimensions == 1);
        assert(merged_dimension_mask->num_dimensions > 1);
        assert(dim_index >= 0 && dim_index < merged_dimension_mask->num_dimensions);
        assert(merged_dimension_mask->dimension[dim_index] == dimension_mask->num_elements);

        /* The mask is split into three parts:
         *     num_elements = num_groups * num_blocks * num_block_elements.
         *
         * Here, num_groups is the product of dimensions [0, dim_index), num_blocks is dimension[dim_index],
         * and num_block_elements is the product of dimensions (dim_index, num_dimensions).
         */

        /* Calculate the number of times we have to filter the indices (i.e. the product of the higher dimensions) */
        num_groups = 1;
        for (i = 0; i < dim_index; i++)
        {
            num_groups *= merged_dimension_mask->dimension[i];
        }

        /* Calculate the number of blocks. */
        num_blocks = merged_dimension_mask->dimension[dim_index];

        /* Calculate the number of elements per block. */
        num_block_elements = merged_dimension_mask->num_elements / (num_groups * num_blocks);

        /* Reduce the mask along the specified dimension. For each index on the specified dimension, if any value in the
         * sub mask corresponding to this index is set to true, set the corresponding value in the reduced mask to true and
         * move to the next index.
         */
        for (i = 0; i < num_blocks; i++)
        {
            long j;

            if (dimension_mask->mask[i])
            {
                continue;
            }

            for (j = 0; j < num_groups; j++)
            {
                memset(merged_dimension_mask->mask + (j * num_blocks + i) * num_block_elements, 0,
                       num_block_elements * sizeof(uint8_t));
            }
        }
    }

    if (harp_dimension_mask_update_masked_length(merged_dimension_mask) != 0)
    {
        return -1;
    }

    return 0;
}

int harp_dimension_mask_set_simplify(harp_dimension_mask_set *dimension_mask_set)
{
    int i;

    /* Update the primary dimension mask such that it is consistent with all 2-D secondary dimension masks. */
    for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
    {
        harp_dimension_mask *dimension_mask = dimension_mask_set[i];
        harp_dimension_mask *reduced_dimension_mask;

        if (dimension_mask == NULL || dimension_mask->num_dimensions <= 1)
        {
            continue;
        }
        assert(dimension_mask->num_dimensions == 2);

        if (dimension_mask_set[harp_dimension_time] == NULL)
        {
            /* Create dimension mask for the primary dimension if necessary. */
            if (harp_dimension_mask_new(1, dimension_mask->dimension, &dimension_mask_set[harp_dimension_time]) != 0)
            {
                return -1;
            }
        }

        /* Update mask for the primary dimension based on information from the (2-D) mask of the secondary dimension. */
        if (harp_dimension_mask_reduce(dimension_mask, 0, &reduced_dimension_mask) != 0)
        {
            return -1;
        }

        if (harp_dimension_mask_merge(reduced_dimension_mask, -1, dimension_mask_set[harp_dimension_time]) != 0)
        {
            harp_dimension_mask_delete(reduced_dimension_mask);
            return -1;
        }
        harp_dimension_mask_delete(reduced_dimension_mask);
    }

    /* Update all 2-D secondary dimension masks such that they are consistent with the primary dimension mask. */
    for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
    {
        harp_dimension_mask *dimension_mask = dimension_mask_set[i];

        if (dimension_mask == NULL || dimension_mask->num_dimensions <= 1)
        {
            continue;
        }
        assert(dimension_mask->num_dimensions == 2);
        assert(dimension_mask_set[harp_dimension_time] != NULL);

        if (harp_dimension_mask_merge(dimension_mask_set[harp_dimension_time], 0, dimension_mask) != 0)
        {
            return -1;
        }
    }

    /* Remove dimensions masks that are always true. */
    for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
    {
        harp_dimension_mask *dimension_mask = dimension_mask_set[i];

        if (dimension_mask == NULL)
        {
            continue;
        }
        assert(dimension_mask->mask != NULL || dimension_mask->num_elements == 0);

        if (count(dimension_mask->num_elements, dimension_mask->mask) == dimension_mask->num_elements)
        {
            harp_dimension_mask_delete(dimension_mask);
            dimension_mask_set[i] = NULL;
        }
    }

    return 0;
}