1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|
/*
* Copyright (C) 2015-2018 S[&]T, The Netherlands.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "harp-dimension-mask.h"
#include "harp-internal.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
int harp_dimension_mask_new(int num_dimensions, const long *dimension, harp_dimension_mask **new_dimension_mask)
{
int i;
harp_dimension_mask *dimension_mask;
dimension_mask = (harp_dimension_mask *)malloc(sizeof(harp_dimension_mask));
if (dimension_mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
sizeof(harp_dimension_mask), __FILE__, __LINE__);
return -1;
}
dimension_mask->num_dimensions = num_dimensions;
dimension_mask->mask = NULL;
dimension_mask->num_elements = 1;
dimension_mask->masked_dimension_length = (num_dimensions == 0 ? 1 : dimension[num_dimensions - 1]);
for (i = 0; i < num_dimensions; i++)
{
dimension_mask->dimension[i] = dimension[i];
dimension_mask->num_elements *= dimension[i];
}
dimension_mask->mask = malloc((size_t)dimension_mask->num_elements * sizeof(uint8_t));
if (dimension_mask->mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
dimension_mask->num_elements * sizeof(uint8_t), __FILE__, __LINE__);
harp_dimension_mask_delete(dimension_mask);
return -1;
}
/* Initialize the mask to all 1's. */
for (i = 0; i < dimension_mask->num_elements; i++)
{
dimension_mask->mask[i] = 1;
}
*new_dimension_mask = dimension_mask;
return 0;
}
void harp_dimension_mask_delete(harp_dimension_mask *dimension_mask)
{
if (dimension_mask != NULL)
{
if (dimension_mask->mask != NULL)
{
free(dimension_mask->mask);
}
free(dimension_mask);
}
}
int harp_dimension_mask_copy(const harp_dimension_mask *other_dimension_mask, harp_dimension_mask **new_dimension_mask)
{
harp_dimension_mask *dimension_mask;
int i;
assert(other_dimension_mask != NULL);
assert(new_dimension_mask != NULL);
dimension_mask = (harp_dimension_mask *)malloc(sizeof(harp_dimension_mask));
if (dimension_mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
sizeof(harp_dimension_mask), __FILE__, __LINE__);
return -1;
}
dimension_mask->num_dimensions = other_dimension_mask->num_dimensions;
for (i = 0; i < dimension_mask->num_dimensions; i++)
{
dimension_mask->dimension[i] = other_dimension_mask->dimension[i];
}
dimension_mask->num_elements = other_dimension_mask->num_elements;
dimension_mask->masked_dimension_length = other_dimension_mask->masked_dimension_length;
dimension_mask->mask = NULL;
dimension_mask->mask = (uint8_t *)malloc(dimension_mask->num_elements * sizeof(uint8_t));
if (dimension_mask->mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
dimension_mask->num_elements * sizeof(uint8_t), __FILE__, __LINE__);
return -1;
}
memcpy(dimension_mask->mask, other_dimension_mask->mask, dimension_mask->num_elements * sizeof(uint8_t));
*new_dimension_mask = dimension_mask;
return 0;
}
int harp_dimension_mask_set_new(harp_dimension_mask_set **new_dimension_mask_set)
{
harp_dimension_mask_set *dimension_mask_set;
int i;
dimension_mask_set = (harp_dimension_mask_set *)malloc(HARP_NUM_DIM_TYPES * sizeof(harp_dimension_mask *));
if (dimension_mask_set == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
HARP_NUM_DIM_TYPES * sizeof(harp_dimension_mask *), __FILE__, __LINE__);
return -1;
}
for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
{
dimension_mask_set[i] = NULL;
}
*new_dimension_mask_set = dimension_mask_set;
return 0;
}
void harp_dimension_mask_set_delete(harp_dimension_mask_set *dimension_mask_set)
{
if (dimension_mask_set != NULL)
{
int i;
for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
{
harp_dimension_mask_delete(dimension_mask_set[i]);
}
free(dimension_mask_set);
}
}
int harp_dimension_mask_fill_true(harp_dimension_mask *dimension_mask)
{
assert(dimension_mask != NULL && dimension_mask->num_elements > 0 && dimension_mask->mask != NULL);
memset(dimension_mask->mask, 1, dimension_mask->num_elements);
dimension_mask->masked_dimension_length = 1;
if (dimension_mask->num_elements > 0)
{
dimension_mask->masked_dimension_length *= dimension_mask->dimension[dimension_mask->num_dimensions - 1];
}
return 0;
}
int harp_dimension_mask_fill_false(harp_dimension_mask *dimension_mask)
{
assert(dimension_mask != NULL && dimension_mask->num_elements > 0 && dimension_mask->mask != NULL);
memset(dimension_mask->mask, 0, dimension_mask->num_elements * sizeof(uint8_t));
dimension_mask->masked_dimension_length = 0;
return 0;
}
static long count(long num_elements, const uint8_t *mask)
{
const uint8_t *mask_end;
long count;
count = 0;
for (mask_end = mask + num_elements; mask != mask_end; mask++)
{
if (*mask)
{
count++;
}
}
return count;
}
int harp_dimension_mask_update_masked_length(harp_dimension_mask *dimension_mask)
{
long num_blocks;
long num_block_elements;
long max_masked_length;
long i;
assert(dimension_mask != NULL);
assert(dimension_mask->num_elements == 0 || dimension_mask->mask != NULL);
num_blocks = (dimension_mask->num_dimensions <= 1 ? 1 : dimension_mask->dimension[0]);
num_block_elements = dimension_mask->num_elements / num_blocks;
max_masked_length = 0;
for (i = 0; i < num_blocks; i++)
{
long masked_length;
masked_length = count(num_block_elements, &dimension_mask->mask[i * num_block_elements]);
if (masked_length > max_masked_length)
{
max_masked_length = masked_length;
}
}
dimension_mask->masked_dimension_length = max_masked_length;
return 0;
}
int harp_dimension_mask_outer_product(const harp_dimension_mask *row_mask, const harp_dimension_mask *col_mask,
harp_dimension_mask **new_dimension_mask)
{
harp_dimension_mask *dimension_mask;
long i;
assert(row_mask != NULL && row_mask->num_dimensions == 1 && row_mask->mask != NULL);
assert(col_mask != NULL && col_mask->num_dimensions == 1 && col_mask->mask != NULL);
assert(new_dimension_mask != NULL);
dimension_mask = (harp_dimension_mask *)malloc(sizeof(harp_dimension_mask));
if (dimension_mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
sizeof(harp_dimension_mask), __FILE__, __LINE__);
return -1;
}
dimension_mask->num_dimensions = 2;
dimension_mask->dimension[0] = row_mask->num_elements;
dimension_mask->dimension[1] = col_mask->num_elements;
dimension_mask->num_elements = dimension_mask->dimension[0] * dimension_mask->dimension[1];
if (row_mask->masked_dimension_length != 0)
{
dimension_mask->masked_dimension_length = col_mask->masked_dimension_length;
}
dimension_mask->mask = malloc(dimension_mask->num_elements * sizeof(uint8_t));
if (dimension_mask->mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
dimension_mask->num_elements * sizeof(uint8_t), __FILE__, __LINE__);
harp_dimension_mask_delete(dimension_mask);
return -1;
}
for (i = 0; i < row_mask->num_elements; i++)
{
if (row_mask->mask[i])
{
memcpy(dimension_mask->mask + i * dimension_mask->dimension[1], col_mask->mask,
dimension_mask->dimension[1] * sizeof(uint8_t));
}
else
{
memset(dimension_mask->mask + i * dimension_mask->dimension[1], 0,
dimension_mask->dimension[1] * sizeof(uint8_t));
}
}
*new_dimension_mask = dimension_mask;
return 0;
}
int harp_dimension_mask_prepend_dimension(harp_dimension_mask *dimension_mask, long length)
{
uint8_t *mask;
long new_num_elements;
long i;
assert(dimension_mask != NULL);
assert(length > 0);
assert(dimension_mask->num_dimensions < 2);
assert(dimension_mask->num_elements > 0);
new_num_elements = dimension_mask->num_elements * length;
mask = (uint8_t *)realloc((void *)dimension_mask->mask, new_num_elements * sizeof(uint8_t));
if (mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
new_num_elements * sizeof(uint8_t), __FILE__, __LINE__);
return -1;
}
dimension_mask->mask = mask;
for (i = 1; i < length; i++)
{
memcpy(dimension_mask->mask + i * dimension_mask->num_elements, dimension_mask->mask,
dimension_mask->num_elements * sizeof(uint8_t));
}
dimension_mask->num_elements = new_num_elements;
dimension_mask->num_dimensions++;
for (i = dimension_mask->num_dimensions - 1; i > 0; i--)
{
dimension_mask->dimension[i] = dimension_mask->dimension[i - 1];
}
dimension_mask->dimension[0] = length;
/* The masked dimension length is not affected by prepending a dimension. */
return 0;
}
int harp_dimension_mask_append_dimension(harp_dimension_mask *dimension_mask, long length)
{
uint8_t *mask;
long new_num_elements;
long i;
assert(dimension_mask != NULL);
assert(length > 0);
assert(dimension_mask->num_dimensions < 2);
assert(dimension_mask->num_elements > 0);
assert(dimension_mask->mask != NULL);
new_num_elements = dimension_mask->num_elements * length;
mask = (uint8_t *)realloc((void *)dimension_mask->mask, new_num_elements * sizeof(uint8_t));
if (mask == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
new_num_elements * sizeof(uint8_t), __FILE__, __LINE__);
return -1;
}
dimension_mask->mask = mask;
for (i = dimension_mask->num_elements - 1; i >= 0; i--)
{
long j;
for (j = 0; j < length; j++)
{
dimension_mask->mask[i * length + j] = dimension_mask->mask[i];
}
}
dimension_mask->num_elements = new_num_elements;
dimension_mask->dimension[dimension_mask->num_dimensions] = length;
dimension_mask->num_dimensions++;
/* Update the masked dimension length. If the original mask is zero everywhere, then the new mask will also be zero
* everywhere and thus the masked dimension length equals zero for both the original and the new mask. Otherwise,
* the masked dimension length of the new mask will be equal to the length of the appended dimension (independent of
* the masked dimension length of the original mask). This is because any non-zero entry in the original mask will
* be repeated along the appended dimension.
*/
if (dimension_mask->masked_dimension_length != 0)
{
dimension_mask->masked_dimension_length = length;
}
return 0;
}
int harp_dimension_mask_reduce(const harp_dimension_mask *dimension_mask, int dim_index,
harp_dimension_mask **new_dimension_mask)
{
harp_dimension_mask *reduced_dimension_mask;
long num_groups;
long num_blocks;
long num_block_elements;
long i;
assert(dimension_mask != NULL && dimension_mask->num_elements != 0 && dimension_mask->mask != NULL);
assert(dim_index >= 0 && dim_index < dimension_mask->num_dimensions);
/* The mask is split into three parts:
* num_elements = num_groups * num_blocks * num_block_elements.
*
* Here, num_groups is the product of dimensions [0, dim_index), num_blocks is dimension[dim_index],
* and num_block_elements is the product of dimensions (dim_index, num_dimensions).
*/
/* Calculate the number of times we have to filter the indices (i.e. the product of the higher dimensions) */
num_groups = 1;
for (i = 0; i < dim_index; i++)
{
num_groups *= dimension_mask->dimension[i];
}
/* Calculate the number of blocks. */
num_blocks = dimension_mask->dimension[dim_index];
/* Calculate the number of elements per block. */
num_block_elements = dimension_mask->num_elements / (num_groups * num_blocks);
/* Allocate the reduced mask. */
if (harp_dimension_mask_new(1, &num_blocks, &reduced_dimension_mask) != 0)
{
return -1;
}
/* Initialize the mask to false (harp_dimension_mask_new() initializes to true). */
if (harp_dimension_mask_fill_false(reduced_dimension_mask) != 0)
{
harp_dimension_mask_delete(reduced_dimension_mask);
return -1;
}
/* Reduce the mask along the specified dimension. For each index on the specified dimension, if any value in the
* sub mask corresponding to this index is set to true, set the corresponding value in the reduced mask to true and
* move to the next index.
*/
for (i = 0; i < num_blocks; i++)
{
long j;
for (j = 0; j < num_groups; j++)
{
const uint8_t *block_ptr;
const uint8_t *block_end_ptr;
block_ptr = dimension_mask->mask + (j * num_blocks + i) * num_block_elements;
block_end_ptr = block_ptr + num_block_elements;
for (; block_ptr != block_end_ptr; block_ptr++)
{
if (*block_ptr)
{
break;
}
}
if (block_ptr != block_end_ptr)
{
/* If any value in the block is set to true, the loop above will exit early, and therefore block_ptr
* will not equal block_end_ptr. In this case, the corresponding value in the reduced mask can be set
* to true and no additional blocks related to this index need to be examined.
*/
reduced_dimension_mask->mask[i] = 1;
reduced_dimension_mask->masked_dimension_length++;
break;
}
}
}
assert(count(reduced_dimension_mask->num_elements, reduced_dimension_mask->mask)
== reduced_dimension_mask->masked_dimension_length);
*new_dimension_mask = reduced_dimension_mask;
return 0;
}
/**
* Merge two dimension masks in place.
*
* Compute the intersection (logical and) of \p dimension_mask and \p merged_dimension_mask, storing the result in
* \p merged_dimension_mask. The masks should either have the same number of dimensions, in which case \p dim_index will
* be ignored, or \p dimension_mask should be one-dimensional, and \p merged_dimension_mask should have more two or more
* dimensions. In the latter case, \p dim_index determines the dimension of \p merged_dimension_mask along which
* \p dimension_mask is to be applied.
*
* \param dimension_mask Dimension mask to be merged into \p merged_dimension_mask.
* \param dim_index Dimension along which \p dimension_mask should be applied; ignored if \p dimension_mask
* and \p merged_dimension_mask have the same number of dimensions.
* \param merged_dimension_mask Dimension mask into which \p dimension_mask will be merged; this masked will be updated
* in place.
* \return
* \arg \c 0, Success.
* \arg \c -1, Error occurred (check #harp_errno).
*/
int harp_dimension_mask_merge(const harp_dimension_mask *dimension_mask, int dim_index,
harp_dimension_mask *merged_dimension_mask)
{
long i;
assert(dimension_mask != NULL);
assert(dimension_mask->num_elements == 0 || dimension_mask->mask != NULL);
assert(merged_dimension_mask != NULL);
assert(merged_dimension_mask->num_elements == 0 || merged_dimension_mask->mask != NULL);
if (dimension_mask->num_dimensions == merged_dimension_mask->num_dimensions)
{
assert(dimension_mask->num_elements == merged_dimension_mask->num_elements);
for (i = 0; i < merged_dimension_mask->num_elements; i++)
{
merged_dimension_mask->mask[i] = dimension_mask->mask[i] && merged_dimension_mask->mask[i];
}
}
else
{
long num_groups;
long num_blocks;
long num_block_elements;
assert(dimension_mask->num_dimensions == 1);
assert(merged_dimension_mask->num_dimensions > 1);
assert(dim_index >= 0 && dim_index < merged_dimension_mask->num_dimensions);
assert(merged_dimension_mask->dimension[dim_index] == dimension_mask->num_elements);
/* The mask is split into three parts:
* num_elements = num_groups * num_blocks * num_block_elements.
*
* Here, num_groups is the product of dimensions [0, dim_index), num_blocks is dimension[dim_index],
* and num_block_elements is the product of dimensions (dim_index, num_dimensions).
*/
/* Calculate the number of times we have to filter the indices (i.e. the product of the higher dimensions) */
num_groups = 1;
for (i = 0; i < dim_index; i++)
{
num_groups *= merged_dimension_mask->dimension[i];
}
/* Calculate the number of blocks. */
num_blocks = merged_dimension_mask->dimension[dim_index];
/* Calculate the number of elements per block. */
num_block_elements = merged_dimension_mask->num_elements / (num_groups * num_blocks);
/* Reduce the mask along the specified dimension. For each index on the specified dimension, if any value in the
* sub mask corresponding to this index is set to true, set the corresponding value in the reduced mask to true and
* move to the next index.
*/
for (i = 0; i < num_blocks; i++)
{
long j;
if (dimension_mask->mask[i])
{
continue;
}
for (j = 0; j < num_groups; j++)
{
memset(merged_dimension_mask->mask + (j * num_blocks + i) * num_block_elements, 0,
num_block_elements * sizeof(uint8_t));
}
}
}
if (harp_dimension_mask_update_masked_length(merged_dimension_mask) != 0)
{
return -1;
}
return 0;
}
int harp_dimension_mask_set_simplify(harp_dimension_mask_set *dimension_mask_set)
{
int i;
/* Update the primary dimension mask such that it is consistent with all 2-D secondary dimension masks. */
for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
{
harp_dimension_mask *dimension_mask = dimension_mask_set[i];
harp_dimension_mask *reduced_dimension_mask;
if (dimension_mask == NULL || dimension_mask->num_dimensions <= 1)
{
continue;
}
assert(dimension_mask->num_dimensions == 2);
if (dimension_mask_set[harp_dimension_time] == NULL)
{
/* Create dimension mask for the primary dimension if necessary. */
if (harp_dimension_mask_new(1, dimension_mask->dimension, &dimension_mask_set[harp_dimension_time]) != 0)
{
return -1;
}
}
/* Update mask for the primary dimension based on information from the (2-D) mask of the secondary dimension. */
if (harp_dimension_mask_reduce(dimension_mask, 0, &reduced_dimension_mask) != 0)
{
return -1;
}
if (harp_dimension_mask_merge(reduced_dimension_mask, -1, dimension_mask_set[harp_dimension_time]) != 0)
{
harp_dimension_mask_delete(reduced_dimension_mask);
return -1;
}
harp_dimension_mask_delete(reduced_dimension_mask);
}
/* Update all 2-D secondary dimension masks such that they are consistent with the primary dimension mask. */
for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
{
harp_dimension_mask *dimension_mask = dimension_mask_set[i];
if (dimension_mask == NULL || dimension_mask->num_dimensions <= 1)
{
continue;
}
assert(dimension_mask->num_dimensions == 2);
assert(dimension_mask_set[harp_dimension_time] != NULL);
if (harp_dimension_mask_merge(dimension_mask_set[harp_dimension_time], 0, dimension_mask) != 0)
{
return -1;
}
}
/* Remove dimensions masks that are always true. */
for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
{
harp_dimension_mask *dimension_mask = dimension_mask_set[i];
if (dimension_mask == NULL)
{
continue;
}
assert(dimension_mask->mask != NULL || dimension_mask->num_elements == 0);
if (count(dimension_mask->num_elements, dimension_mask->mask) == dimension_mask->num_elements)
{
harp_dimension_mask_delete(dimension_mask);
dimension_mask_set[i] = NULL;
}
}
return 0;
}
|