File: harp-filter.c

package info (click to toggle)
harp 1.5%2Bdata-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 54,032 kB
  • sloc: xml: 286,510; ansic: 143,710; yacc: 1,910; python: 913; makefile: 600; lex: 574; sh: 69
file content (621 lines) | stat: -rw-r--r-- 21,125 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/*
 * Copyright (C) 2015-2018 S[&]T, The Netherlands.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "harp-filter.h"

#include <assert.h>
#include <stdlib.h>
#include <string.h>

static void free_string_data(char **first, char **last)
{
    for (; first != last; first++)
    {
        if (*first != NULL)
        {
            free(*first);
            *first = NULL;
        }
    }
}

static void filter_array_int8(long num_source_elements, const uint8_t *mask, const int8_t *source,
                              long num_target_elements, int8_t *target)
{
    const int8_t *source_end;
    int8_t *target_end;

    target_end = target + num_target_elements;
    for (source_end = source + num_source_elements; source != source_end; source++, mask++)
    {
        if (*mask)
        {
            *target = *source;
            target++;
            num_target_elements--;
        }
    }

    for (; target != target_end; target++)
    {
        *target = 0;
    }
}

static void filter_array_int16(long num_source_elements, const uint8_t *mask, const int16_t *source,
                               long num_target_elements, int16_t *target)
{
    const int16_t *source_end;
    int16_t *target_end;

    target_end = target + num_target_elements;
    for (source_end = source + num_source_elements; source != source_end; source++, mask++)
    {
        if (*mask)
        {
            *target = *source;
            target++;
            num_target_elements--;
        }
    }

    for (; target != target_end; target++)
    {
        *target = 0;
    }
}

static void filter_array_int32(long num_source_elements, const uint8_t *mask, const int32_t *source,
                               long num_target_elements, int32_t *target)
{
    const int32_t *source_end;
    int32_t *target_end;

    target_end = target + num_target_elements;
    for (source_end = source + num_source_elements; source != source_end; source++, mask++)
    {
        if (*mask)
        {
            *target = *source;
            target++;
            num_target_elements--;
        }
    }

    for (; target != target_end; target++)
    {
        *target = 0;
    }
}

static void filter_array_float(long num_source_elements, const uint8_t *mask, const float *source,
                               long num_target_elements, float *target)
{
    const float *source_end;
    float *target_end;

    target_end = target + num_target_elements;
    for (source_end = source + num_source_elements; source != source_end; source++, mask++)
    {
        if (*mask)
        {
            *target = *source;
            target++;
        }
    }

    for (; target != target_end; target++)
    {
        *target = (float)harp_nan();
    }
}

static void filter_array_double(long num_source_elements, const uint8_t *mask, const double *source,
                                long num_target_elements, double *target)
{
    const double *source_end;
    double *target_end;

    target_end = target + num_target_elements;
    for (source_end = source + num_source_elements; source != source_end; source++, mask++)
    {
        if (*mask)
        {
            *target = *source;
            target++;
        }
    }

    for (; target != target_end; target++)
    {
        *target = harp_nan();
    }
}

static void filter_array_string(long num_source_elements, const uint8_t *mask, char **source,
                                long num_target_elements, char **target)
{
    char **source_end;
    char **target_end;

    target_end = target + num_target_elements;
    for (source_end = source + num_source_elements; source != source_end; source++, mask++)
    {
        if (*mask)
        {
            if (target != source)
            {
                if (*target != NULL)
                {
                    free(*target);
                }

                *target = *source;
                *source = NULL;
            }

            target++;
            num_target_elements--;
        }
    }

    free_string_data(target, target_end);
}

static void filter_array(harp_data_type data_type, long num_source_elements, const uint8_t *mask, harp_array source,
                         long num_target_elements, harp_array target)
{
    if (mask == NULL)
    {
        assert(num_source_elements == num_target_elements);

        if (target.ptr != source.ptr)
        {
            if (data_type == harp_type_string)
            {
                free_string_data(target.string_data, target.string_data + num_target_elements);
            }

            memcpy(target.ptr, source.ptr, num_target_elements * harp_get_size_for_type(data_type));

            if (data_type == harp_type_string)
            {
                memset(source.ptr, 0, num_source_elements * harp_get_size_for_type(data_type));
            }
        }
    }
    else
    {
        switch (data_type)
        {
            case harp_type_int8:
                filter_array_int8(num_source_elements, mask, source.int8_data, num_target_elements, target.int8_data);
                break;
            case harp_type_int16:
                filter_array_int16(num_source_elements, mask, source.int16_data, num_target_elements,
                                   target.int16_data);
                break;
            case harp_type_int32:
                filter_array_int32(num_source_elements, mask, source.int32_data, num_target_elements,
                                   target.int32_data);
                break;
            case harp_type_float:
                filter_array_float(num_source_elements, mask, source.float_data, num_target_elements,
                                   target.float_data);
                break;
            case harp_type_double:
                filter_array_double(num_source_elements, mask, source.double_data, num_target_elements,
                                    target.double_data);
                break;
            case harp_type_string:
                filter_array_string(num_source_elements, mask, source.string_data, num_target_elements,
                                    target.string_data);
                break;
            default:
                assert(0);
                exit(1);
        }
    }
}

/**
 * Filter the source array by copying elements to the target array for which the corresponding entry in the source mask
 * evaluates to true. The length of the source array is allowed to be larger than the length of the target array, as
 * long as the total number of elements that will be copied is smaller than or equal to the length of the target array.
 * \param data_type           Data type of source and target arrays
 * \param num_dimensions      Number of dimensions of source and target arrays
 * \param source_dimension    Dimension length for each source dimension
 * \param source_mask         Source mask; If NULL, all elements from the source array will be copied. Otherwise, the
 *     mask should have the same length as the source array.
 * \param source              Source array.
 * \param target_dimension    Resulting dimension length for each target dimension
 * \param target              Target array.
 */
void harp_array_filter(harp_data_type data_type, int num_dimensions, const long *source_dimension,
                       const uint8_t **source_mask, harp_array source, const long *target_dimension, harp_array target)
{
    long data_type_size;
    long source_stride[HARP_MAX_NUM_DIMS];
    long target_stride[HARP_MAX_NUM_DIMS];
    long source_index[HARP_MAX_NUM_DIMS] = { 0 };
    long target_index[HARP_MAX_NUM_DIMS] = { 0 };
    int dimension_index;
    int i;

    /* Special case for scalars. */
    if (num_dimensions == 0)
    {
        filter_array(data_type, 1, NULL, source, 1, target);
        return;
    }

    if (num_dimensions == 1)
    {
        /* Special case for 1-D arrays. */
        filter_array(data_type, *source_dimension, *source_mask, source, *target_dimension, target);
        return;
    }

    /* TODO: Consecutive dimensions for which the corresponding masks are NULL can be folded. */
    data_type_size = harp_get_size_for_type(data_type);
    source_stride[num_dimensions - 1] = target_stride[num_dimensions - 1] = data_type_size;
    for (i = num_dimensions - 1; i > 0; i--)
    {
        source_stride[i - 1] = source_stride[i] * source_dimension[i];
        target_stride[i - 1] = target_stride[i] * target_dimension[i];
    }

    dimension_index = 0;
    while (dimension_index >= 0)
    {
        while (dimension_index >= 0 && dimension_index < num_dimensions - 1)
        {
            if (source_mask[dimension_index] != NULL)
            {
                /* Skip indices on the current dimension that should be discarded according to the mask. */
                while (source_index[dimension_index] < source_dimension[dimension_index]
                       && !source_mask[dimension_index][source_index[dimension_index]])
                {
                    source_index[dimension_index]++;
                    source.ptr = (void *)(((char *)source.ptr) + source_stride[dimension_index]);
                }
            }

            if (source_index[dimension_index] < source_dimension[dimension_index])
            {
                /* This index on the current dimension should be kept. Move to the next dimension. */
                dimension_index++;
            }
            else
            {
                /* Set any remaining blocks on the current dimension of the target array to null. */
                long num_blocks;

                num_blocks = target_dimension[dimension_index] - target_index[dimension_index];
                assert(num_blocks >= 0);

                if (num_blocks > 0)
                {
                    harp_array_null(data_type, num_blocks * target_stride[dimension_index] / data_type_size, target);
                    target.ptr = (void *)(((char *)target.ptr) + num_blocks * target_stride[dimension_index]);
                }

                /* Reached the end of the current dimension. Set the index on the current dimension to zero and increase
                 * the previous dimension (unless we reached the end of the outermost dimension).
                 */
                source_index[dimension_index] = 0;
                target_index[dimension_index] = 0;
                dimension_index--;

                if (dimension_index >= 0)
                {
                    source_index[dimension_index]++;
                    target_index[dimension_index]++;
                }
            }
        }

        if (dimension_index > 0)
        {
            /* Filter the fastest running dimension. */
            filter_array(data_type, source_dimension[dimension_index], source_mask[dimension_index], source,
                         target_dimension[dimension_index], target);

            /* Move to the next index on the previous dimension. */
            source_index[dimension_index] = 0;
            target_index[dimension_index] = 0;
            dimension_index--;

            source_index[dimension_index]++;
            target_index[dimension_index]++;
            source.ptr = (void *)(((char *)source.ptr) + source_stride[dimension_index]);
            target.ptr = (void *)(((char *)target.ptr) + target_stride[dimension_index]);
        }
    }
}

int harp_variable_filter(harp_variable *variable, const harp_dimension_mask_set *dimension_mask_set)
{
    const uint8_t *mask[HARP_MAX_NUM_DIMS] = { 0 };
    long new_dimension[HARP_MAX_NUM_DIMS];
    long new_num_elements;
    int has_masks = 0;
    int has_2D_masks = 0;
    int i;

    if (dimension_mask_set == NULL)
    {
        return 0;
    }

    if (variable->num_dimensions == 0)
    {
        /* Scalars do not depend on any dimension, and will therefore not be affected by dimension masks. */
        return 0;
    }

    /* Determine the dimensions of the variable after filtering. */
    for (i = 0; i < variable->num_dimensions; i++)
    {
        harp_dimension_type dimension_type = variable->dimension_type[i];

        if (dimension_type == harp_dimension_independent)
        {
            new_dimension[i] = variable->dimension[i];
        }
        else
        {
            const harp_dimension_mask *dimension_mask = dimension_mask_set[dimension_type];

            if (dimension_mask == NULL)
            {
                new_dimension[i] = variable->dimension[i];
            }
            else
            {
                new_dimension[i] = dimension_mask->masked_dimension_length;
            }
        }
    }

    /* Determine the number of elements remaining after filtering. */
    new_num_elements = harp_get_num_elements(variable->num_dimensions, new_dimension);

    /* Get information about the applicable dimension masks. */
    for (i = 0; i < variable->num_dimensions; i++)
    {
        harp_dimension_type dimension_type = variable->dimension_type[i];

        if (dimension_type != harp_dimension_independent)
        {
            const harp_dimension_mask *dimension_mask = dimension_mask_set[dimension_type];

            if (dimension_mask == NULL)
            {
                continue;
            }

            assert(dimension_mask->mask != NULL);

            has_masks = 1;
            mask[i] = dimension_mask->mask;
            if (dimension_mask->num_dimensions == 2)
            {
                assert(i > 0 && variable->dimension_type[0] == harp_dimension_time);
                assert(dimension_type != harp_dimension_time);
                has_2D_masks = 1;
            }
        }
    }

    if (!has_masks)
    {
        /* No applicable dimension masks, hence no filtering required. */
        return 0;
    }

    if (!has_2D_masks)
    {
        harp_array_filter(variable->data_type, variable->num_dimensions, variable->dimension, mask, variable->data,
                          new_dimension, variable->data);
    }
    else
    {
        harp_array source = variable->data;
        harp_array target = variable->data;
        long source_stride;
        long target_stride;
        long mask_stride[HARP_MAX_NUM_DIMS] = { 0 };
        long j;

        /* Since the mask for time dimension is 1-D per definition, the fact that there are 2-D masks implies that there
         * is at least one mask for a secondary dimension.
         */
        assert(variable->dimension_type[0] == harp_dimension_time);

        /* Determine strides for iterating the (outer) time dimension. */
        source_stride = (variable->num_elements / variable->dimension[0]) * harp_get_size_for_type(variable->data_type);
        target_stride = (new_num_elements / new_dimension[0]) * harp_get_size_for_type(variable->data_type);

        for (i = 0; i < variable->num_dimensions; i++)
        {
            harp_dimension_type dimension_type = variable->dimension_type[i];

            if (dimension_type != harp_dimension_independent)
            {
                const harp_dimension_mask *dimension_mask = dimension_mask_set[dimension_type];

                if (dimension_mask == NULL)
                {
                    continue;
                }

                if (i == 0)
                {
                    assert(dimension_mask->num_dimensions == 1);
                    mask_stride[i] = 1;
                }
                else if (dimension_mask->num_dimensions == 2)
                {
                    assert(dimension_type != harp_dimension_time);
                    mask_stride[i] = dimension_mask->dimension[1];
                }
            }
        }

        for (j = 0; j < variable->dimension[0]; j++)
        {
            if (mask[0] == NULL || *mask[0])
            {
                harp_array_filter(variable->data_type, variable->num_dimensions - 1, &variable->dimension[1], &mask[1],
                                  source, &new_dimension[1], target);

                target.ptr = (void *)(((char *)target.ptr) + target_stride);
            }

            for (i = 0; i < variable->num_dimensions; i++)
            {
                if (mask[i] != NULL)
                {
                    mask[i] += mask_stride[i];
                }
            }

            source.ptr = (void *)(((char *)source.ptr) + source_stride);
        }
    }

    /* Free any remaining string data. */
    if (variable->data_type == harp_type_string)
    {
        free_string_data(variable->data.string_data + new_num_elements,
                         variable->data.string_data + variable->num_elements);
    }

    /* Adjust the size of the variable. */
    if (new_num_elements < variable->num_elements)
    {
        void *new_data;

        new_data = realloc(variable->data.ptr, new_num_elements * harp_get_size_for_type(variable->data_type));
        if (new_data == NULL)
        {
            harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %u bytes) (%s:%u)",
                           new_num_elements * harp_get_size_for_type(variable->data_type), __FILE__, __LINE__);
            return -1;
        }
        variable->data.ptr = new_data;
    }

    /* Update variable attributes. */
    variable->num_elements = new_num_elements;
    memcpy(variable->dimension, new_dimension, variable->num_dimensions * sizeof(long));

    return 0;
}

int harp_product_filter(harp_product *product, const harp_dimension_mask_set *dimension_mask_set)
{
    int i;

    if (dimension_mask_set == NULL)
    {
        return 0;
    }

    /* If the new length of any dimension is zero, return an empty product. This is not considered an error. */
    for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
    {
        const harp_dimension_mask *dimension_mask = dimension_mask_set[i];

        if (dimension_mask != NULL && dimension_mask->masked_dimension_length == 0)
        {
            harp_product_remove_all_variables(product);
            return 0;
        }
    }

    /* Filter all variables in the product. */
    for (i = 0; i < product->num_variables; i++)
    {
        harp_variable *variable = product->variable[i];

        /* if we have a 2D dim filter then make sure that the variable has a time dimension */
        if (variable->num_dimensions > 0 && variable->dimension_type[0] != harp_dimension_time)
        {
            int j;

            for (j = 0; j < variable->num_dimensions; j++)
            {
                harp_dimension_type dimension_type = variable->dimension_type[j];

                if (dimension_type == harp_dimension_independent || dimension_mask_set[dimension_type] == NULL)
                {
                    continue;
                }

                if (dimension_mask_set[dimension_type]->num_dimensions == 2)
                {
                    break;
                }
            }

            if (j != variable->num_dimensions)
            {
                assert(product->dimension[harp_dimension_time] > 0);

                if (harp_variable_add_dimension(variable, 0, harp_dimension_time,
                                                product->dimension[harp_dimension_time]) != 0)
                {
                    return -1;
                }
            }
        }

        if (harp_variable_filter(variable, dimension_mask_set) != 0)
        {
            return -1;
        }
    }

    /* Update product dimensions. */
    for (i = 0; i < HARP_NUM_DIM_TYPES; i++)
    {
        const harp_dimension_mask *dimension_mask = dimension_mask_set[i];

        if (dimension_mask != NULL)
        {
            product->dimension[i] = dimension_mask->masked_dimension_length;
        }
    }

    return 0;
}