1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/*
* Copyright (C) 2015-2018 S[&]T, The Netherlands.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "harp-geometry.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
/* Check if two Euler transformation are equal */
int harp_euler_transformation_equal(const harp_euler_transformation *euler1, const harp_euler_transformation *euler2)
{
harp_spherical_point pointin[2], point[4];
pointin[0].lat = 0.0;
pointin[0].lon = 0.0;
pointin[1].lat = 0.0;
pointin[1].lon = M_PI_2;
harp_spherical_point_apply_euler_transformation(&point[0], &pointin[0], euler1);
harp_spherical_point_apply_euler_transformation(&point[1], &pointin[1], euler1);
harp_spherical_point_apply_euler_transformation(&point[2], &pointin[0], euler2);
harp_spherical_point_apply_euler_transformation(&point[3], &pointin[1], euler2);
return (harp_spherical_point_equal(&point[0], &point[2]) && harp_spherical_point_equal(&point[1], &point[3]));
}
/* This transforms an Euler transformation into an ZXZ-axis Euler transformation */
void harp_euler_transformation_transform_to_zxz_euler_transformation(harp_euler_transformation *transformationout,
const harp_euler_transformation *transformationin,
const harp_euler_transformation *transformation)
{
harp_spherical_point point[4];
point[0].lat = 0.0;
point[0].lon = 0.0;
point[1].lat = 0.0;
point[1].lon = M_PI_2;
harp_spherical_point_apply_euler_transformation(&point[2], &point[0], transformationin);
harp_spherical_point_apply_euler_transformation(&point[3], &point[1], transformationin);
harp_spherical_point_apply_euler_transformation(&point[0], &point[2], transformation);
harp_spherical_point_apply_euler_transformation(&point[1], &point[3], transformation);
/* Determine output transformation */
harp_euler_transformation_from_spherical_vector(transformationout, &point[0], &point[1]);
}
/* Invert an Euler transformation
*
* Parameter:
* pointer to input transformation
* Replace input transformation with output transformation
*/
void harp_euler_transformation_invert(harp_euler_transformation *transformation)
{
harp_spherical_point point[3];
const unsigned char c = transformation->phi_axis;
point[2].lat = 0.0;
point[1].lat = 0.0;
point[0].lat = 0.0;
point[2].lon = -transformation->phi;
point[1].lon = -transformation->theta;
point[0].lon = -transformation->psi;
/* Check spherical points */
harp_spherical_point_check(&point[0]);
harp_spherical_point_check(&point[1]);
harp_spherical_point_check(&point[2]);
transformation->phi = point[0].lon;
transformation->theta = point[1].lon;
transformation->psi = point[2].lon;
/* Swap phi and psi-axis */
transformation->phi_axis = transformation->psi_axis;
transformation->psi_axis = c;
}
/* Sets axes of rotation to ZXZ */
void harp_euler_transformation_set_to_zxz(harp_euler_transformation *transformation)
{
transformation->phi_axis = 'Z';
transformation->theta_axis = 'X';
transformation->psi_axis = 'Z';
}
/* Transform a spherical vector to an
* inverse Euler transformation
*
* Parameters:
* inverse_transformation = pointer to
* inverse Euler transformation
* pointbegin = pointer to begin of spherical vector
* pointend = pointer to end of spherical vector
*/
static void inverse_euler_transformation_from_spherical_vector(harp_euler_transformation *inverse_transformation,
const harp_spherical_point *sphericalvectorbegin,
const harp_spherical_point *sphericalvectorend)
{
if (harp_spherical_point_equal(sphericalvectorbegin, sphericalvectorend))
{
inverse_transformation->phi = 0.0;
inverse_transformation->theta = 0.0;
inverse_transformation->psi = 0.0;
}
else
{
harp_vector3d vectorbegin;
harp_vector3d vectorend;
harp_vector3d vectortemp;
harp_spherical_point pointtemp[2];
/* Convert (lat,lon) coordinates to Cartesian coordinates and
calculate cross product of the two obtained vectors */
harp_vector3d_from_spherical_point(&vectorbegin, sphericalvectorbegin);
harp_vector3d_from_spherical_point(&vectorend, sphericalvectorend);
harp_vector3d_crossproduct(&vectortemp, &vectorbegin, &vectorend);
/* Convert (x,y,z) of obtained point (lat,lon) and store
it in pointtemp[0] */
harp_spherical_point_from_vector3d(&pointtemp[0], &vectortemp);
inverse_transformation->phi = -pointtemp[0].lon - M_PI_2;
inverse_transformation->theta = pointtemp[0].lat - M_PI_2;
inverse_transformation->psi = 0.0;
/* Use ZXZ as axes of transformation */
harp_euler_transformation_set_to_zxz(inverse_transformation);
/* Apply Euler transformation on the spherical point */
harp_spherical_point_apply_euler_transformation(&pointtemp[1], sphericalvectorbegin, inverse_transformation);
inverse_transformation->psi = -pointtemp[1].lon;
}
}
/* Transform a spherical vector to a Euler transformation
*
* Parameters:
* transformation = pointer to Euler transformation
* pointbegin = pointer to begin of spherical vector
* pointend = pointer to end of spherical vector
*/
void harp_euler_transformation_from_spherical_vector(harp_euler_transformation *transformation,
const harp_spherical_point *sphericalvectorbegin,
const harp_spherical_point *sphericalvectorend)
{
/* Determine inverse Euler transformation and save the inverse transformation in "transformation" */
inverse_euler_transformation_from_spherical_vector(transformation, sphericalvectorbegin, sphericalvectorend);
/* Invert the inverse Euler transformation */
harp_euler_transformation_invert(transformation);
}
/* Apply Euler transformation of 3d vector.
* This involves a transformation over three angles:
*
* psi
* theta
* phi
*
* Here, the angles are in [rad]
*/
static int vector3d_apply_euler_transformation(harp_vector3d *vectorout, const harp_vector3d *vectorin,
const harp_euler_transformation *transformation)
{
double u[3], v[3], sin_angle, cos_angle;
const double *angle;
unsigned char axis;
int i;
/* Input vector */
axis = 'X'; /* Assume X */
angle = NULL;
u[0] = vectorin->x;
u[1] = vectorin->y;
u[2] = vectorin->z;
for (i = 0; i < 3; i++)
{
switch (i)
{
case 0:
angle = &transformation->phi;
axis = transformation->phi_axis;
break;
case 1:
angle = &transformation->theta;
axis = transformation->theta_axis;
break;
case 2:
angle = &transformation->psi;
axis = transformation->psi_axis;
break;
}
if (HARP_GEOMETRY_FPzero(*angle))
{
continue;
}
sin_angle = sin(*angle);
cos_angle = cos(*angle);
switch (axis)
{
case 'X':
/* transformation around X-axis */
v[0] = u[0];
v[1] = cos_angle * u[1] - sin_angle * u[2];
v[2] = sin_angle * u[1] + cos_angle * u[2];
break;
case 'Y':
/* transformation around Y-axis */
v[0] = cos_angle * u[0] + sin_angle * u[2];
v[1] = u[1];
v[2] = -sin_angle * u[0] + cos_angle * u[2];
break;
case 'Z':
/* transformation around Z-axis */
v[0] = cos_angle * u[0] - sin_angle * u[1];
v[1] = sin_angle * u[0] + cos_angle * u[1];
v[2] = u[2];
break;
default:
harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "invalid Euler axis");
return -1;
}
memcpy((void *)&u[0], (void *)&v[0], sizeof(u));
}
vectorout->x = u[0];
vectorout->y = u[1];
vectorout->z = u[2];
return 0;
}
/* Apply Euler transformation of spherical point */
void harp_spherical_point_apply_euler_transformation(harp_spherical_point *pointout,
const harp_spherical_point *pointin,
const harp_euler_transformation *transformation)
{
harp_vector3d vectorin;
harp_vector3d vectorout;
/* First, convert (lat,lon) to (x,y,z) coordinates */
harp_vector3d_from_spherical_point(&vectorin, pointin);
/* Rotate the vector around the 3 Euler axes to get the output vector */
vector3d_apply_euler_transformation(&vectorout, &vectorin, transformation);
/* Finally, convert the rotated vector (x,y,z) to (lat,lon) coordinates */
harp_spherical_point_from_vector3d(pointout, &vectorout);
harp_spherical_point_check(pointout);
}
|