File: harp-geometry-sphere-line.c

package info (click to toggle)
harp 1.5%2Bdata-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 54,032 kB
  • sloc: xml: 286,510; ansic: 143,710; yacc: 1,910; python: 913; makefile: 600; lex: 574; sh: 69
file content (636 lines) | stat: -rw-r--r-- 19,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
 * Copyright (C) 2015-2018 S[&]T, The Netherlands.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "harp-geometry.h"

#include <math.h>

/* A spherical_line is defined by a length and
 *   an Euler transformation that defines
 *   the begin point of the line. This point is obtained
 *   by rotating (lat,lon) = (0,0) with three angles:
 *     phi    the first  rotation angle around z-axis
 *     theta  the second rotation angle around x-axis
 *     psi    the last   rotation angle around z-axis
 */

/* Convert a line to an Euler transformation */
static void euler_transformation_from_spherical_line(harp_euler_transformation *transformation,
                                                     const harp_spherical_line *line)
{
    harp_euler_transformation_set_to_zxz(transformation);

    transformation->phi = line->phi;
    transformation->theta = line->theta;
    transformation->psi = line->psi;
}

/* Convert a line to an inverse Euler transformation */
void harp_inverse_euler_transformation_from_spherical_line(harp_euler_transformation *inverse_transformation,
                                                           const harp_spherical_line *line)
{
    /* First, derive the not-inverted transformation */
    euler_transformation_from_spherical_line(inverse_transformation, line);

    /* Invert */
    harp_euler_transformation_invert(inverse_transformation);
}

/* Transform a spherical line using an Euler transformation */
static void spherical_line_apply_euler_transformation(harp_spherical_line *lineout, const harp_spherical_line *linein,
                                                      const harp_euler_transformation *transformation)
{
    harp_euler_transformation transformationtemp[2];

    euler_transformation_from_spherical_line(&transformationtemp[0], linein);

    harp_euler_transformation_transform_to_zxz_euler_transformation(&transformationtemp[1], &transformationtemp[0],
                                                                    transformation);
    lineout->phi = transformationtemp[1].phi;
    lineout->theta = transformationtemp[1].theta;
    lineout->psi = transformationtemp[1].psi;
    lineout->length = linein->length;
}

/* Swap the begin point and end point of a spherical line */
static void spherical_line_swap_begin_end(harp_spherical_line *lineout, const harp_spherical_line *linein)
{
    harp_euler_transformation transformation;
    harp_spherical_line linetemp;

    /* Define a temporary line */
    linetemp.length = linein->length;

    /* Rotate the temporary line around the Z-axis */
    linetemp.phi = -linein->length;
    linetemp.theta = M_PI;
    linetemp.psi = 0.0;

    /* Set the Euler transformation */
    harp_euler_transformation_set_to_zxz(&transformation);

    transformation.phi = linein->phi;
    transformation.theta = linein->theta;
    transformation.psi = linein->psi;

    spherical_line_apply_euler_transformation(lineout, &linetemp, &transformation);
}

/* Check if two spherical lines are equal */
static int spherical_line_equal(const harp_spherical_line *line1, const harp_spherical_line *line2)
{
    if (HARP_GEOMETRY_FPne(line1->length, line2->length))
    {
        return 0;
    }
    else
    {
        harp_euler_transformation euler1, euler2;

        harp_euler_transformation_set_to_zxz(&euler1);
        harp_euler_transformation_set_to_zxz(&euler2);

        euler1.phi = line1->phi;
        euler1.theta = line1->theta;
        euler1.psi = line1->psi;

        euler2.phi = (HARP_GEOMETRY_FPeq(line2->length, 2.0 * M_PI)) ? (line1->phi) : (line2->phi);
        euler2.theta = line2->theta;
        euler2.psi = line2->psi;

        return (harp_euler_transformation_equal(&euler1, &euler2));
    }

    return 0;
}

/* Determine begin point of spherical line */
void harp_spherical_line_begin(harp_spherical_point *point, const harp_spherical_line *line)
{
    harp_spherical_point pointtmp = { 0.0, 0.0 };
    harp_euler_transformation euler;

    euler_transformation_from_spherical_line(&euler, line);
    harp_spherical_point_apply_euler_transformation(point, &pointtmp, &euler);
}

/* Determine end point of spherical line */
void harp_spherical_line_end(harp_spherical_point *point, const harp_spherical_line *line)
{
    harp_spherical_point pointtmp = { 0.0, 0.0 };
    harp_euler_transformation euler;

    pointtmp.lon = line->length;

    euler_transformation_from_spherical_line(&euler, line);
    harp_spherical_point_apply_euler_transformation(point, &pointtmp, &euler);
}

int8_t harp_spherical_line_spherical_line_relationship(const harp_spherical_line *line1,
                                                       const harp_spherical_line *line2)
{
    harp_euler_transformation se;
    harp_spherical_line sl1, sl2;
    harp_spherical_point p[4];
    int a1, a2, switched;
    int res;

    switched = 0;

    if (spherical_line_equal(line1, line2))
    {
        return HARP_GEOMETRY_LINE_EQUAL;
    }

    spherical_line_swap_begin_end(&sl1, line1);
    if (spherical_line_equal(&sl1, line2))
    {
        return HARP_GEOMETRY_LINE_CONTAINS;
    }

    /* transform the larger line into equator ( begin at (0,0) ) */
    sl1.phi = sl1.theta = sl1.psi = 0.0;
    if (HARP_GEOMETRY_FPge(line1->length, line2->length))
    {
        harp_inverse_euler_transformation_from_spherical_line(&se, line1);
        sl1.length = line1->length;
        spherical_line_apply_euler_transformation(&sl2, line2, &se);
        switched = 0;
    }
    else if (HARP_GEOMETRY_FPge(line2->length, line1->length))
    {
        harp_inverse_euler_transformation_from_spherical_line(&se, line2);
        sl1.length = line2->length;
        spherical_line_apply_euler_transformation(&sl2, line1, &se);
        switched = 1;
    }
    if (HARP_GEOMETRY_FPzero(sl1.length))
    {   /* both are points */
        return HARP_GEOMETRY_LINE_SEPARATE;
    }

    harp_spherical_line_begin(&p[0], &sl1);
    harp_spherical_line_end(&p[1], &sl1);
    harp_spherical_line_begin(&p[2], &sl2);
    harp_spherical_line_end(&p[3], &sl2);

    /* Check, sl2 is at equator */
    if (HARP_GEOMETRY_FPzero(p[2].lat) && HARP_GEOMETRY_FPzero(p[3].lat))
    {
        a1 = harp_spherical_point_is_at_spherical_line(&p[2], &sl1);
        a2 = harp_spherical_point_is_at_spherical_line(&p[3], &sl1);

        if (a1 && a2)
        {
            if (switched)
            {
                return HARP_GEOMETRY_LINE_CONTAINED;
            }
            else
            {
                return HARP_GEOMETRY_LINE_CONTAINS;
            }
        }
        else if (a1 || a2)
        {
            return HARP_GEOMETRY_LINE_OVERLAP;
        }

        return HARP_GEOMETRY_LINE_SEPARATE;
    }

    /* Now sl2 is not at equator */
    res = 0;

    /* check connected lines */
    if (HARP_GEOMETRY_FPgt(sl2.length, 0.0))
    {
        if (harp_spherical_point_equal(&p[0], &p[2]))
        {
            res = (1 << HARP_GEOMETRY_LINE_CONNECTED);
        }

        if (harp_spherical_point_equal(&p[0], &p[3]))
        {
            res = (1 << HARP_GEOMETRY_LINE_CONNECTED);
        }

        if (harp_spherical_point_equal(&p[1], &p[2]))
        {
            res = (1 << HARP_GEOMETRY_LINE_CONNECTED);
        }

        if (harp_spherical_point_equal(&p[1], &p[3]))
        {
            res = (1 << HARP_GEOMETRY_LINE_CONNECTED);
        }
    }

    a1 = (HARP_GEOMETRY_FPge(p[2].lat, 0.0) && HARP_GEOMETRY_FPle(p[3].lat, 0.0));      /* sl2 crosses equator desc. */
    a2 = (HARP_GEOMETRY_FPle(p[2].lat, 0.0) && HARP_GEOMETRY_FPge(p[3].lat, 0.0));      /* sl1 crosses equator asc. */

    if (!(a1 || a2))
    {
        res |= (1 << HARP_GEOMETRY_LINE_SEPARATE);
    }
    else
    {
        harp_vector3d v[2][2];
        harp_spherical_point sp;

        /* Now we take the vectors of line's begin and end */
        harp_vector3d_from_spherical_point(&v[0][0], &p[0]);
        harp_vector3d_from_spherical_point(&v[0][1], &p[1]);
        harp_vector3d_from_spherical_point(&v[1][0], &p[2]);
        harp_vector3d_from_spherical_point(&v[1][1], &p[3]);

        if (v[0][1].x <= 0.0)
        {
            v[0][1].y = 1.0;
        }

        harp_inverse_euler_transformation_from_spherical_line(&se, &sl2);

        sp.lat = 0;
        sp.lon = ((a1) ? (M_PI) : (0.0)) - se.phi;      /* node */

        harp_spherical_point_check(&sp);

        if (HARP_GEOMETRY_FPge(sp.lon, 0.0) && HARP_GEOMETRY_FPle(sp.lon, p[1].lon))
        {
            res |= (1 << HARP_GEOMETRY_LINE_CROSS);
        }
        else
        {
            res |= (1 << HARP_GEOMETRY_LINE_SEPARATE);
        }
    }

    if (res == (1 << HARP_GEOMETRY_LINE_SEPARATE))
    {
        return HARP_GEOMETRY_LINE_SEPARATE;
    }

    if (res & (1 << HARP_GEOMETRY_LINE_CONNECTED))
    {
        return HARP_GEOMETRY_LINE_CONNECTED;
    }

    if (res & (1 << HARP_GEOMETRY_LINE_CONTAINS))
    {
        return HARP_GEOMETRY_LINE_CONTAINS;
    }

    if (res & (1 << HARP_GEOMETRY_LINE_CONTAINED))
    {
        return HARP_GEOMETRY_LINE_CONTAINED;
    }

    if (res & (1 << HARP_GEOMETRY_LINE_CROSS))
    {
        return HARP_GEOMETRY_LINE_CROSS;
    }

    return HARP_GEOMETRY_LINE_SEPARATE;
}

/* Return a meridian line for a given longitude [rad] */
static void spherical_line_meridian(harp_spherical_line *line, double lon)
{
    harp_spherical_point point;

    line->phi = -M_PI_2;
    line->theta = M_PI_2;

    point.lat = 0.0;
    point.lon = lon;

    harp_spherical_point_check(&point);

    line->psi = point.lon;
    line->length = M_PI;
}

/* Derive a spherical line from two spherical points */
int harp_spherical_line_from_spherical_points(harp_spherical_line *line, const harp_spherical_point *point_begin,
                                              const harp_spherical_point *point_end)
{
    /* Declare an Euler transformation */
    harp_euler_transformation se;

    /* Define the distance between begin and end point */
    double length;

    /* Calculate the distance between begin and end point */
    length = harp_spherical_point_distance(point_begin, point_end);

    /* Deal with special case that the distance between begin and end point is exactly 180 deg. */
    /* Then, the line corresponds to a meridian. */
    if (HARP_GEOMETRY_FPeq(length, M_PI))
    {
        if (HARP_GEOMETRY_FPeq(point_begin->lon, point_end->lon))
        {
            spherical_line_meridian(line, point_begin->lon);
            return 1;   /* true */
        }
        return 0;       /* false */
    }

    /* Transform the spherical point to an Euler transformation */
    if (HARP_GEOMETRY_FPeq(length, 0))
    {
        line->phi = M_PI_2;
        line->theta = point_begin->lat;
        line->psi = point_begin->lon - M_PI_2;
        line->length = 0.0;
    }
    else
    {
        /* A spherical line is defined with starting point (0,0) and ending point (length, 0)
           that is transformed with a ZXZ Euler transform with angles (phi, theta, psi) */
        harp_euler_transformation_from_spherical_vector(&se, point_begin, point_end);
        line->phi = se.phi;
        line->theta = se.theta;
        line->psi = se.psi;
        line->length = length;
    }

    return 1;   /* true */
}

/* Check if a point lies at a spherical line */
int harp_spherical_point_is_at_spherical_line(const harp_spherical_point *point, const harp_spherical_line *line)
{
    harp_euler_transformation euler_rotation_inverse;
    harp_spherical_point point_rotated;

    /* Derive the Euler transformation from the input line */
    harp_inverse_euler_transformation_from_spherical_line(&euler_rotation_inverse, line);

    /* Rotate the point */
    harp_spherical_point_apply_euler_transformation(&point_rotated, point, &euler_rotation_inverse);

    /* Check the rotated point */
    if (HARP_GEOMETRY_FPzero(point_rotated.lat))
    {
        if (HARP_GEOMETRY_FPge(point_rotated.lon, 0.0) && HARP_GEOMETRY_FPle(point_rotated.lon, line->length))
        {
            return 1;
        }
        else
        {
            return 0;
        }
    }
    else
    {
        return 0;
    }
}

/* Calculates the intersection point u of the greatcircles through p1/p2 and q1/q2
 * (given in latitude(tau)/longitude(phi) coordinates) where p1/p2/q1/q2 form a rectangular region
 *
 *    \        /
 *     q2    p2
 *       \  /
 *        u
 *       /  \
 *     p1    q1
 *    /        \
 *
 * The intersection point 'u' is calculated via: u = (p1 x p2) x (q1 x q2) (a cross product of cross products)
 */
void harp_spherical_line_spherical_line_intersection_point(const harp_spherical_line *line_p,
                                                           const harp_spherical_line *line_q,
                                                           harp_spherical_point *point_u)
{
    harp_spherical_point point_p1, point_p2, point_q1, point_q2;
    double p1, t1, p2, t2;
    double cp1, sp1, ct1, st1;
    double cp2, sp2, ct2, st2;
    double x1, y1, z1, x2, y2, z2;
    double npx, npy, npz;       /* np = p1 x p2 */
    double nqx, nqy, nqz;       /* nq = q1 x q2 */
    double ux, uy, uz;  /* u = np x nq */
    double pu, tu;
    double norm_u;      /* ||u|| */

    /* calculate np */

    harp_spherical_line_begin(&point_p1, line_p);
    harp_spherical_line_end(&point_p2, line_p);
    harp_spherical_line_begin(&point_q1, line_q);
    harp_spherical_line_end(&point_q2, line_q);

    t1 = point_p1.lat;  /* in rad */
    p1 = point_p1.lon;
    t2 = point_p2.lat;
    p2 = point_p2.lon;

    cp1 = cos(p1);
    sp1 = sin(p1);
    ct1 = cos(t1);
    st1 = sin(t1);
    cp2 = cos(p2);
    sp2 = sin(p2);
    ct2 = cos(t2);
    st2 = sin(t2);

    x1 = cp1 * ct1;
    y1 = sp1 * ct1;
    z1 = st1;

    x2 = cp2 * ct2;
    y2 = sp2 * ct2;
    z2 = st2;

    /* np = (x1,y1,z1) x (x2,y2,z2) (cross product) */
    npx = y1 * z2 - z1 * y2;
    npy = -(x1 * z2 - z1 * x2);
    npz = x1 * y2 - y1 * x2;

    /* calculate nq */

    t1 = point_q1.lat;
    p1 = point_q1.lon;
    t2 = point_q2.lat;
    p2 = point_q2.lon;

    cp1 = cos(p1);
    sp1 = sin(p1);
    ct1 = cos(t1);
    st1 = sin(t1);
    cp2 = cos(p2);
    sp2 = sin(p2);
    ct2 = cos(t2);
    st2 = sin(t2);

    x1 = cp1 * ct1;
    y1 = sp1 * ct1;
    z1 = st1;

    x2 = cp2 * ct2;
    y2 = sp2 * ct2;
    z2 = st2;

    /* nq = (x1,y1,z1) x (x2,y2,z2) (cross product) */
    nqx = y1 * z2 - z1 * y2;
    nqy = -(x1 * z2 - z1 * x2);
    nqz = x1 * y2 - y1 * x2;

    /* calculate u */

    /* u = (npx,npy,npz) x (nqx,nqy,nqz) (cross product) */
    ux = npy * nqz - npz * nqy;
    uy = -(npx * nqz - npz * nqx);
    uz = npx * nqy - npy * nqx;

    /* calculate ||u|| */
    norm_u = sqrt(ux * ux + uy * uy + uz * uz);

    /* if ||u|| == 0 then p1/p2 and q1/q2 produce the same greatcircle and
     * we can't interpolate -> return NaN values
     */
    if (norm_u == 0)
    {
        point_u->lat = harp_nan();
        point_u->lon = harp_nan();
        return;
    }

    /* normalize u */
    ux = ux / norm_u;
    uy = uy / norm_u;
    uz = uz / norm_u;

    /* calculate phi_u and tau_u */
    tu = asin(uz);

    /* atan2 automatically 'does the right thing' ((ux,uy)=(0,0) -> pu=0) */
    pu = atan2(uy, ux);

    point_u->lat = tu;
    point_u->lon = pu;  /* in rad */

    harp_spherical_point_check(point_u);
}

/* Derive line segment from spherical polygon */
int harp_spherical_polygon_get_segment(harp_spherical_line *line, const harp_spherical_polygon *polygon, int32_t i)
{
    /* First, make sure that the index is valid */
    if (i >= 0 && i < polygon->numberofpoints)
    {
        harp_spherical_point point_begin;
        harp_spherical_point point_end;

        /* We are dealing with index of last point;
           derive the line segment connecting last point with first point of polygon */
        if (i == (polygon->numberofpoints - 1))
        {
            point_begin = polygon->point[i];

            point_end = polygon->point[0];

            harp_spherical_line_from_spherical_points(line, &point_begin, &point_end);
        }
        /* Derive the line segment connecting the current point with the nex point */
        else
        {
            point_begin = polygon->point[i];
            point_end = polygon->point[i + 1];

            harp_spherical_line_from_spherical_points(line, &point_begin, &point_end);
        }

        return 0;
    }
    /* The index is outside the valid range */
    else
    {
        return -1;
    }
}

/* Point-line distance in 3D
 *
 * Given a point u = (xu,yu,zu)
 * and the begin and end point of a line sement, p = (xp,yp,zp) and q = (xq,yq,zq),
 * calculate the point-line distance:
 *
 *    d = |(u-p) x (u-q)| / | p-q |
 */
double harp_spherical_line_spherical_point_distance(const harp_spherical_line *line, const harp_spherical_point *point)
{
    harp_spherical_point point_begin, point_end;
    harp_vector3d p, q, u, u_min_p, u_min_q, p_min_q, cross_product;
    double norm_cross_product, norm_p_min_q, d;

    /* Convert all points to Cartesian coordinates */
    harp_spherical_line_begin(&point_begin, line);
    harp_spherical_line_end(&point_end, line);

    harp_vector3d_from_spherical_point(&p, &point_begin);
    harp_vector3d_from_spherical_point(&q, &point_end);
    harp_vector3d_from_spherical_point(&u, point);

    /* Calculate u-p, u-q, and p-q */
    u_min_p.x = u.x - p.x;
    u_min_p.y = u.y - p.y;
    u_min_p.z = u.z - p.z;

    u_min_q.x = u.x - q.x;
    u_min_q.y = u.y - q.y;
    u_min_q.z = u.z - q.z;

    p_min_q.x = p.x - q.x;
    p_min_q.y = p.y - q.y;
    p_min_q.z = p.z - q.z;

    /* Calculate |(u-p) x (u-q)| */
    harp_vector3d_crossproduct(&cross_product, &u_min_p, &u_min_q);
    norm_cross_product = harp_vector3d_norm(&cross_product);

    /* Calculate | p-q | */
    norm_p_min_q = harp_vector3d_norm(&p_min_q);

    if (norm_p_min_q == 0.0)
    {
        d = harp_nan();
    }
    else
    {
        d = norm_cross_product / norm_p_min_q;
    }

    return d;
}