File: harp-geometry-sphere-polygon.c

package info (click to toggle)
harp 1.5%2Bdata-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 54,032 kB
  • sloc: xml: 286,510; ansic: 143,710; yacc: 1,910; python: 913; makefile: 600; lex: 574; sh: 69
file content (1231 lines) | stat: -rw-r--r-- 43,271 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
/*
 * Copyright (C) 2015-2018 S[&]T, The Netherlands.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "harp-geometry.h"

#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

/* the haversine function */
static double hav(double x)
{
    return (1 - cos(x)) / 2;
}

/* check whether a point is within the lat/lon bounds of a polygon */
static int spherical_polygon_bounds_contains_any_points(const harp_spherical_polygon *polygon, int num_points,
                                                        const harp_spherical_point *point)
{
    double min_lat, max_lat, lat;
    double min_lon, max_lon, lon;
    double ref_lon;
    int i;

    if (polygon->numberofpoints == 0 || num_points == 0)
    {
        return 0;
    }

    /* We have two special cases to deal with: boundaries that cross the dateline and boundaries that cover a pole.
     * Boundaries that cross the dateline are handled by mapping all longitudes to the range [x-PI,x+PI] with x being
     * the longitude of the first polygon point.
     */

    min_lon = polygon->point[0].lon;
    max_lon = min_lon;
    ref_lon = min_lon;
    min_lat = polygon->point[0].lat;
    max_lat = min_lat;

    for (i = 1; i < polygon->numberofpoints; i++)
    {
        lon = polygon->point[i].lon;
        lat = polygon->point[i].lat;

        if (lat < min_lat)
        {
            min_lat = lat;
        }
        else if (lat > max_lat)
        {
            max_lat = lat;
        }

        if (lon < ref_lon - M_PI)
        {
            lon += 2.0 * M_PI;
        }
        else if (lon > ref_lon + M_PI)
        {
            lon -= 2.0 * M_PI;
        }
        if (lon < min_lon)
        {
            min_lon = lon;
        }
        else if (lon > max_lon)
        {
            max_lon = lon;
        }
        ref_lon = lon;
    }
    /* close the polygon (this could have a different longitude, due to the ref_lon mapping) */
    lon = polygon->point[0].lon;
    if (lon < ref_lon - M_PI)
    {
        lon += 2.0 * M_PI;
    }
    else if (lon > ref_lon + M_PI)
    {
        lon -= 2.0 * M_PI;
    }
    if (lon < min_lon)
    {
        min_lon = lon;
    }
    else if (lon > max_lon)
    {
        max_lon = lon;
    }
    /* we are covering a pole if our longitude range equals 2pi */
    if (HARP_GEOMETRY_FPeq(max_lon, min_lon + 2.0 * M_PI))
    {
        if (max_lat > 0)
        {
            max_lat = M_PI_2;
        }
        if (min_lat < 0)
        {
            min_lat = -M_PI_2;
        }
        /* (if we cross the equator then we don't know which pole is covered => take whole earth as bounding box) */
    }

    for (i = 0; i < num_points; i++)
    {
        lon = point[i].lon;
        lat = point[i].lat;

        if (lon < min_lon)
        {
            lon += 2.0 * M_PI;
        }
        else if (lon > max_lon)
        {
            lon -= 2.0 * M_PI;
        }

        if (HARP_GEOMETRY_FPle(min_lat, lat) && HARP_GEOMETRY_FPle(lat, max_lat) &&
            HARP_GEOMETRY_FPle(min_lon, lon) && HARP_GEOMETRY_FPle(lon, max_lon))
        {
            return 1;
        }
    }

    return 0;
}

/* Derive line segment from edge of polygon */
static int spherical_line_segment_from_polygon(harp_spherical_line *line, const harp_spherical_polygon *polygon,
                                               int32_t i)
{
    if (i >= 0 && i < polygon->numberofpoints)
    {
        if (i == (polygon->numberofpoints - 1))
        {
            harp_spherical_line_from_spherical_points(line, &polygon->point[i], &polygon->point[0]);
        }
        else
        {
            harp_spherical_line_from_spherical_points(line, &polygon->point[i], &polygon->point[i + 1]);
        }
        return 0;
    }
    else
    {
        harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "index (%d) out of range [%d,%d)", i, 0, polygon->numberofpoints);

        return -1;
    }
}

/* Return error (-1) if the polygon is invalid, or 0 for a valid polygon.
 * A polygon is invalid if the centre is the 0-vector (polygon too large) or if line segments are crossing.
 */
int harp_spherical_polygon_check(const harp_spherical_polygon *polygon)
{
    harp_spherical_line linei, linek;
    harp_vector3d vector;
    harp_spherical_point point;
    harp_euler_transformation se;
    int8_t relationship;        /* Relationship between lines */
    int32_t i, k;

    /* Centre should not correspond to 0-vector */
    harp_spherical_polygon_centre(&vector, (harp_spherical_polygon *)polygon);

    if (HARP_GEOMETRY_FPzero(vector.x) && HARP_GEOMETRY_FPzero(vector.y) && HARP_GEOMETRY_FPzero(vector.z))
    {
        harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "invalid polygon (polygon too large)");
        return -1;
    }

    /* Line segments should not cross each other */
    for (i = 0; i < polygon->numberofpoints; i++)
    {
        /* Grab line segment from polygon */
        spherical_line_segment_from_polygon(&linei, polygon, i);

        for (k = (i + 1); k < polygon->numberofpoints; k++)
        {
            /* Grab line segment from polygon */
            spherical_line_segment_from_polygon(&linek, polygon, k);

            /* Determine the relationship between two line segments */
            relationship = harp_spherical_line_spherical_line_relationship(&linei, &linek);

            /* Line segments should not cross each other, i.e. they should connect or avoid each other entirely */
            if (!(relationship == HARP_GEOMETRY_LINE_CONNECTED || relationship == HARP_GEOMETRY_LINE_SEPARATE))
            {
                harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "invalid polygon (line segments overlap)");
                return -1;
            }
        }
    }

    /* Check that polygon does not cover more than half the globe */
    /* (all polygon points should be on the northern hemisphere if the polygon center was the north pole) */

    /* Convert Cartesian vector to spherical point on sphere */
    harp_spherical_point_from_vector3d(&point, &vector);

    /* Set ZXZ Euler transformation */
    harp_euler_transformation_set_to_zxz(&se);
    se.phi = -M_PI_2 - point.lon;
    se.theta = -M_PI_2 + point.lat;
    se.psi = 0.0;

    for (i = 0; i < polygon->numberofpoints; ++i)
    {
        harp_spherical_point_apply_euler_transformation(&point, &(polygon->point[i]), &se);

        /* Less _AND_ equal is important */
        if (HARP_GEOMETRY_FPle(point.lat, 0.0))
        {
            harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "invalid polygon");
            return -1;
        }
    }

    return 0;
}

/* Does a transformation of polygon using Euler transformation
 *   se = pointer to Euler transformation
 *   in = pointer to polygon
 *   out pointer to transformed polygon
 */
static int spherical_polygon_apply_euler_transformation(harp_spherical_polygon *polygon_out,
                                                        const harp_spherical_polygon *polygon_in,
                                                        const harp_euler_transformation *se)
{
    int32_t i;

    /* Copy the size and number of points */
    polygon_out->size = polygon_in->size;
    polygon_out->numberofpoints = polygon_in->numberofpoints;

    /* Apply the Euler transformation on each point of the polygon */
    for (i = 0; i < polygon_in->numberofpoints; i++)
    {
        harp_spherical_point_apply_euler_transformation(&polygon_out->point[i], &polygon_in->point[i], se);
    }

    return 0;
}

/*##################
 * Single polygons
 *##################*/

/* Derive the centre coordinates of a polygon */
int harp_spherical_polygon_centre(harp_vector3d *vector_centre, const harp_spherical_polygon *polygon)
{
    harp_vector3d vector_polygon_point;
    harp_spherical_point pointa, pointb;        /* Start with two 3D vectors */
    harp_vector3d vectora, vectorb;
    int32_t i;

    vectora.x = 2.0;
    vectora.y = 2.0;
    vectora.z = 2.0;

    vectorb.x = -2.0;
    vectorb.y = -2.0;
    vectorb.z = -2.0;

    /* Search for minimum and maximum value of (x,y,z);
     * store minimum in vector a and maximum in vector b */
    for (i = 0; i < polygon->numberofpoints; ++i)
    {
        harp_vector3d_from_spherical_point(&vector_polygon_point, (harp_spherical_point *)&polygon->point[i]);

        /* Store minimum in vector a */
        if (vector_polygon_point.x < vectora.x)
        {
            vectora.x = vector_polygon_point.x;
        }
        if (vector_polygon_point.y < vectora.y)
        {
            vectora.y = vector_polygon_point.y;
        }
        if (vector_polygon_point.z < vectora.z)
        {
            vectora.z = vector_polygon_point.z;
        }

        /* Store maximum in vector b */
        if (vector_polygon_point.x > vectorb.x)
        {
            vectorb.x = vector_polygon_point.x;
        }
        if (vector_polygon_point.y > vectorb.y)
        {
            vectorb.y = vector_polygon_point.y;
        }
        if (vector_polygon_point.z > vectorb.z)
        {
            vectorb.z = vector_polygon_point.z;
        }
    }

    /* Points a and b */
    harp_spherical_point_from_vector3d(&pointa, &vectora);
    harp_spherical_point_from_vector3d(&pointb, &vectorb);

    vector_centre->x = (vectora.x + vectorb.x) / 2.0;
    vector_centre->y = (vectora.y + vectorb.y) / 2.0;
    vector_centre->z = (vectora.z + vectorb.z) / 2.0;

    return 0;
}

int harp_spherical_polygon_contains_point(const harp_spherical_polygon *polygon, const harp_spherical_point *point)
{
    int32_t i;
    harp_spherical_line sl;
    int result = 0;     /* false */

    if (!spherical_polygon_bounds_contains_any_points(polygon, 1, point))
    {
        /* point is outside the lat/lon bounds of the polygon => return false */
        return 0;
    }

    /*--------------------------------
     * Check whether point is on edge.
     *--------------------------------*/

    /* Check whether the spherical point lies on a vertex of the polygon */
    for (i = 0; i < polygon->numberofpoints; ++i)
    {
        if (harp_spherical_point_equal(&polygon->point[i], point))
        {
            /* return true */
            return 1;
        }
    }

    /*-------------------------------------------
     * Check whether point is on a line segment.
     *------------------------------------------*/

    /* Check whether the spherical point lies on a line segment of the polygon */
    for (i = 0; i < polygon->numberofpoints; ++i)
    {
        harp_spherical_polygon_get_segment(&sl, polygon, i);

        if (harp_spherical_point_is_at_spherical_line(point, &sl))
        {
            /* return true */
            return 1;
        }
    }

    /*------------------------
     * Make some other checks
     *------------------------*/
    do
    {
        harp_euler_transformation se;
        harp_euler_transformation te;
        harp_spherical_point p;
        harp_spherical_point lp[2];

        /* Define some Booleans */
        int a1;
        int a2;
        int on_equator;

        /* Set counter to zero */
        int32_t counter = 0;

        /* Create a temporary polygon with same number of points as input polygon */
        harp_spherical_polygon *tmp;

        if (harp_spherical_polygon_new(polygon->numberofpoints, &tmp) != 0)
        {
            return -1;
        }

        /* Make a transformation, so that point is (0,0) */
        harp_euler_transformation_set_to_zxz(&se);
        se.phi = (double)M_PI_2 - point->lon;
        se.theta = -1.0 * point->lat;
        se.psi = -1.0 * (double)M_PI_2;

        spherical_polygon_apply_euler_transformation(tmp, polygon, &se);

        p.lat = 0.0;
        p.lon = 0.0;

        harp_spherical_point_check(&p);

        /* Initialize Euler transformation te */
        harp_euler_transformation_set_to_zxz(&te);
        te.phi = 0.0;
        te.theta = 0.0;
        te.psi = 0.0;

        /*---------------------------------------------
         * Check, whether an edge lies on the equator.
         * If yes, rotate randomized around (0,0)
         *--------------------------------------------*/

        counter = 0;

        do
        {
            on_equator = 0;
            for (i = 0; i < polygon->numberofpoints; i++)
            {
                if (HARP_GEOMETRY_FPzero(tmp->point[i].lat))
                {
                    if (HARP_GEOMETRY_FPeq(cos(tmp->point[i].lon), -1.0))
                    {
                        /* return false */
                        return 0;
                    }
                    else
                    {
                        on_equator = 1;
                        break;
                    }
                }
            }

            /* Rotate the polygon randomized around (0,0) */
            if (on_equator)
            {
                /* Define a new polygon */
                harp_spherical_polygon *ttt;

                if (harp_spherical_polygon_new(polygon->numberofpoints, &ttt) != 0)
                {
                    free(tmp);
                    return -1;
                }

                /* Set the seed */
                srand((unsigned int)counter);

                /* Set the rotation */
                se.phi_axis = se.theta_axis = se.psi_axis = 'X';
                se.phi = ((double)rand() / RAND_MAX) * 2.0 * M_PI;
                se.theta = 0.0;
                se.psi = 0.0;

                /* Apply the rotation */
                spherical_polygon_apply_euler_transformation(ttt, tmp, &se);

                /* Copy the polygon ttt back to tmp */
                memcpy((void *)tmp, (void *)ttt, offsetof(harp_spherical_polygon, point) +
                       sizeof(harp_spherical_point) * polygon->numberofpoints);

                free(ttt);
            }

            assert(counter <= 10000);
            counter++;

        } while (on_equator);

        /*--------------------------------------------
         * Count line segments crossing the "equator"
         *--------------------------------------------*/

        counter = 0;

        for (i = 0; i < polygon->numberofpoints; i++)
        {
            /* Create a single line from the segment */
            spherical_line_segment_from_polygon(&sl, tmp, i);

            /* Determine begin and point of the spherical line */
            harp_spherical_line_begin(&lp[0], &sl);
            harp_spherical_line_end(&lp[1], &sl);

            a1 = (HARP_GEOMETRY_FPgt(lp[0].lat, 0.0) && HARP_GEOMETRY_FPlt(lp[1].lat, 0.0));
            a2 = (HARP_GEOMETRY_FPlt(lp[0].lat, 0.0) && HARP_GEOMETRY_FPgt(lp[1].lat, 0.0));

            if (a1 || a2)
            {
                /* If crossing */
                harp_inverse_euler_transformation_from_spherical_line(&te, &sl);

                if (a2)
                {
                    /* Crossing ascending */
                    p.lon = 2.0 * M_PI - te.phi;
                }
                else
                {
                    p.lon = M_PI - te.phi;
                }

                harp_spherical_point_check(&p);

                if (p.lon < M_PI)
                {
                    /* Crossing between 0 and 180 deg */
                    counter++;
                }
            }
        }

        /* Delete the temporary polygon */
        free(tmp);

        /* Check if counter is odd */
        if (counter % 2 == 1)
        {
            result = 1;
        }

    } while (0);

    return result;
}

int8_t harp_spherical_polygon_spherical_line_relationship(const harp_spherical_polygon *polygon,
                                                          const harp_spherical_line *line)
{
    harp_spherical_line sl;
    harp_spherical_point slbeg, slend;
    const int8_t sl_os = (int8_t)(1 << HARP_GEOMETRY_LINE_SEPARATE);
    const int8_t sl_eq = (int8_t)(1 << HARP_GEOMETRY_LINE_EQUAL);
    const int8_t sl_cd = (int8_t)(1 << HARP_GEOMETRY_LINE_CONTAINED);
    const int8_t sl_cr = (int8_t)(1 << HARP_GEOMETRY_LINE_CROSS);
    const int8_t sl_cn = (int8_t)(1 << HARP_GEOMETRY_LINE_CONNECTED);
    const int8_t sl_ov = (int8_t)(1 << HARP_GEOMETRY_LINE_OVERLAP);
    int8_t p1, p2, pos, res;
    int i;

    pos = 0;
    res = 0;
    harp_spherical_line_begin(&slbeg, line);
    harp_spherical_line_end(&slend, line);
    p1 = (int8_t)harp_spherical_polygon_contains_point(polygon, &slbeg);
    p2 = (int8_t)harp_spherical_polygon_contains_point(polygon, &slend);
    for (i = 0; i < polygon->numberofpoints; i++)
    {
        harp_spherical_polygon_get_segment(&sl, polygon, i);

        pos = (int8_t)(1 << harp_spherical_line_spherical_line_relationship(&sl, line));
        if (pos == sl_eq)
        {
            pos = sl_cd;        /* is contained */
        }

        if (pos == sl_ov)
        {
            return HARP_GEOMETRY_LINE_POLY_OVERLAP;     /* overlap */
        }
        /* Recheck line crossing */
        if (pos == sl_cr)
        {
            int8_t bal, eal;

            bal = (int8_t)harp_spherical_point_is_at_spherical_line(&slbeg, &sl);
            eal = (int8_t)harp_spherical_point_is_at_spherical_line(&slend, &sl);
            if (!bal && !eal)
            {
                return HARP_GEOMETRY_LINE_POLY_OVERLAP; /* overlap */
            }
            if ((bal && p2) || (eal && p1))
            {
                pos = sl_cd;    /* is contained */
            }
            else
            {
                return HARP_GEOMETRY_LINE_POLY_OVERLAP; /* overlap */
            }
        }

        res |= pos;
    }
    if ((res & sl_cd) && ((res - sl_cd - sl_os - sl_cn - 1) < 0))
    {
        return HARP_GEOMETRY_LINE_POLY_CONTAINED;
    }
    else if (p1 && p2 && ((res - sl_os - sl_cn - 1) < 0))
    {
        return HARP_GEOMETRY_LINE_POLY_CONTAINED;
    }
    else if (!p1 && !p2 && ((res - sl_os - 1) < 0))
    {
        return HARP_GEOMETRY_LINE_POLY_SEPARATE;
    }

    return HARP_GEOMETRY_LINE_POLY_OVERLAP;
}

/* Determine relationship of two polygon areas */
int8_t harp_spherical_polygon_spherical_polygon_relationship(const harp_spherical_polygon *polygon_a,
                                                             const harp_spherical_polygon *polygon_b, int recheck)
{
    int32_t i;
    harp_spherical_line sl;
    int8_t pos = 0, res = 0;
    const int8_t sp_os = (int8_t)(1 << HARP_GEOMETRY_LINE_POLY_SEPARATE);
    const int8_t sp_ct = (int8_t)(1 << HARP_GEOMETRY_LINE_POLY_CONTAINED);
    const int8_t sp_ov = (int8_t)(1 << HARP_GEOMETRY_LINE_POLY_OVERLAP);

    if (!recheck)
    {
        if (!spherical_polygon_bounds_contains_any_points(polygon_a, polygon_b->numberofpoints, polygon_b->point) &&
            !spherical_polygon_bounds_contains_any_points(polygon_b, polygon_a->numberofpoints, polygon_a->point))
        {
            return HARP_GEOMETRY_POLY_SEPARATE;
        }
    }

    for (i = 0; i < polygon_b->numberofpoints; i++)
    {
        harp_spherical_polygon_get_segment(&sl, polygon_b, i);

        pos = (int8_t)(1 << harp_spherical_polygon_spherical_line_relationship(polygon_a, &sl));
        if (pos == sp_ov)
        {
            /* overlap */
            return HARP_GEOMETRY_POLY_OVERLAP;
        }

        res |= pos;
    }

    if (res == sp_os)
    {
        if (!recheck)
        {
            pos = harp_spherical_polygon_spherical_polygon_relationship(polygon_b, polygon_a, 1);
            if (pos == HARP_GEOMETRY_POLY_CONTAINS)
            {
                return HARP_GEOMETRY_POLY_CONTAINED;
            }
            assert(pos != HARP_GEOMETRY_LINE_POLY_OVERLAP);
        }
        return HARP_GEOMETRY_POLY_SEPARATE;
    }

    if (res == sp_ct)
    {
        return HARP_GEOMETRY_POLY_CONTAINS;
    }

    return HARP_GEOMETRY_POLY_OVERLAP;
}

/* Determine whether two polygons overlap */
int harp_spherical_polygon_overlapping(const harp_spherical_polygon *polygon_a, const harp_spherical_polygon *polygon_b,
                                       int *polygons_are_overlapping)
{
    int8_t relationship;

    /* Determine relationship of two areas */
    relationship = harp_spherical_polygon_spherical_polygon_relationship(polygon_a, polygon_b, 0);
    if (relationship == HARP_GEOMETRY_POLY_CONTAINS || relationship == HARP_GEOMETRY_POLY_CONTAINED ||
        relationship == HARP_GEOMETRY_POLY_OVERLAP)
    {
        *polygons_are_overlapping = 1;
    }
    else
    {
        /* No overlap */
        *polygons_are_overlapping = 0;
    }

    return 0;
}

/* Calculate the signed surface area (in [m2]) of polygon */
static int spherical_polygon_get_surface_area(const harp_spherical_polygon *polygon, double *area_out)
{
    int32_t numberofpoints;
    double latA, lonA, latC, lonC;
    double area = 0.0;
    int32_t i;

    if (polygon == NULL)
    {
        harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "input polygon for signed surface area calculation is empty");
        return -1;
    }

    numberofpoints = polygon->numberofpoints;
    if (numberofpoints < 3)
    {
        *area_out = 0.0;
        return 0;
    }

    /* We use Girard's theorem which says that the area of a polygon is the sum of its internal angles minus (n-2)*pi
     * The actual algorithm itself is based on that of Robbert D. Miller, "Graphics Gems IV", Academic Press, 1994 */
    for (i = 0; i < numberofpoints; i++)
    {
        double a, b, c, s;

        latA = polygon->point[i].lat;
        lonA = polygon->point[i].lon;
        if (i < numberofpoints - 1)
        {
            latC = polygon->point[i + 1].lat;
            lonC = polygon->point[i + 1].lon;
        }
        else
        {
            latC = polygon->point[0].lat;
            lonC = polygon->point[0].lon;
        }
        if (lonC < lonA - M_PI)
        {
            lonC += 2 * M_PI;
        }
        else if (lonC > lonA + M_PI)
        {
            lonC -= 2 * M_PI;
        }

        if (lonA != lonC)
        {
            double sinangle;
            double E;

            a = M_PI_2 - latC;
            c = M_PI_2 - latA;
            sinangle = sqrt(hav(a - c) + sin(a) * sin(c) * hav(lonC - lonA));
            HARP_CLAMP(sinangle, -1.0, 1.0);
            b = 2 * asin(sinangle);
            s = 0.5 * (a + b + c);
            E = 4 * atan(sqrt(fabs(tan(s / 2) * tan((s - a) / 2) * tan((s - b) / 2) * tan((s - c) / 2))));
            if (lonC < lonA)
            {
                E = -E;
            }
            area += E;
        }
    }

    area = fabs(area);

    /* Take the area that covers less than half of the sphere */
    if (area > 2 * M_PI)
    {
        area = 4 * M_PI - area;
    }

    /* Convert area [rad2] to [m2] */
    *area_out = CONST_EARTH_RADIUS_WGS84_SPHERE * CONST_EARTH_RADIUS_WGS84_SPHERE * area;

    return 0;
}

/* Determine whether two polygons overlap, and if so
 * calculate the overlapping fraction of the two polygons */
int harp_spherical_polygon_overlapping_fraction(const harp_spherical_polygon *polygon_a,
                                                const harp_spherical_polygon *polygon_b,
                                                int *polygons_are_overlapping, double *overlapping_fraction)
{
    int8_t relationship;

    /* First, determine relationship of two areas */
    relationship = harp_spherical_polygon_spherical_polygon_relationship(polygon_a, polygon_b, 0);
    if (relationship == HARP_GEOMETRY_POLY_CONTAINS || relationship == HARP_GEOMETRY_POLY_CONTAINED)
    {
        *overlapping_fraction = 1.0;
        *polygons_are_overlapping = 1;
    }
    else if (relationship == HARP_GEOMETRY_POLY_OVERLAP)
    {
        harp_spherical_polygon *polygon_intersect = NULL;
        double min_area_a_area_b;
        double area_a;
        double area_b;
        double area_ab;
        uint8_t *point_a_in_polygon_b;
        uint8_t *point_b_in_polygon_a;
        int32_t num_intersection_points = 0;
        int32_t offset_a = 0;
        int32_t offset_c = 0;   /* index in intersection polygon */
        int32_t i;

        /* There must be an intersection, so try to find it */
        point_a_in_polygon_b = malloc((size_t)polygon_a->numberofpoints * sizeof(uint8_t));
        if (point_a_in_polygon_b == NULL)
        {
            harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)\n",
                           polygon_a->numberofpoints, __FILE__, __LINE__);
            return -1;
        }
        point_b_in_polygon_a = malloc((size_t)polygon_b->numberofpoints * sizeof(uint8_t));
        if (point_b_in_polygon_a == NULL)
        {
            harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)\n",
                           polygon_b->numberofpoints, __FILE__, __LINE__);
            free(point_a_in_polygon_b);
            return -1;
        }
        for (i = 0; i < polygon_a->numberofpoints; i++)
        {
            point_a_in_polygon_b[i] = (uint8_t)harp_spherical_polygon_contains_point(polygon_b, &polygon_a->point[i]);
            if (point_a_in_polygon_b[i])
            {
                num_intersection_points++;
            }
        }
        for (i = 0; i < polygon_b->numberofpoints; i++)
        {
            point_b_in_polygon_a[i] = (uint8_t)harp_spherical_polygon_contains_point(polygon_a, &polygon_b->point[i]);
            if (point_b_in_polygon_a[i])
            {
                num_intersection_points++;
            }
        }
        for (i = 0; i < polygon_a->numberofpoints; i++)
        {
            if (point_a_in_polygon_b[i] != point_a_in_polygon_b[i == 0 ? polygon_a->numberofpoints - 1 : i - 1])
            {
                num_intersection_points++;
            }
        }
        assert(num_intersection_points > 0);

        if (harp_spherical_polygon_new(num_intersection_points, &polygon_intersect) != 0)
        {
            harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not create polygon) (%s:%u)" __FILE__,
                           __LINE__);
            free(point_a_in_polygon_b);
            free(point_b_in_polygon_a);
            return -1;
        }

        while (offset_a < polygon_a->numberofpoints)
        {
            harp_spherical_line line_a;
            int32_t next_offset_a = offset_a == polygon_a->numberofpoints - 1 ? 0 : offset_a + 1;

            if (point_a_in_polygon_b[offset_a])
            {
                assert(offset_c != num_intersection_points);
                polygon_intersect->point[offset_c] = polygon_a->point[offset_a];
                offset_c++;
            }
            /* are we switching from polygons? */
            if ((point_a_in_polygon_b[offset_a] && !point_a_in_polygon_b[next_offset_a]) ||
                (!point_a_in_polygon_b[offset_a] && point_a_in_polygon_b[next_offset_a]))
            {
                harp_spherical_line line_b;
                int32_t offset_b = 0;

                spherical_line_segment_from_polygon(&line_a, polygon_a, offset_a);

                /* find line segment in polygon b that crosses line_a */
                while (offset_b < polygon_b->numberofpoints)
                {
                    int32_t next_offset_b = offset_b == polygon_b->numberofpoints - 1 ? 0 : offset_b + 1;

                    if ((point_b_in_polygon_a[offset_b] && !point_b_in_polygon_a[next_offset_b]) ||
                        (!point_b_in_polygon_a[offset_b] && point_b_in_polygon_a[next_offset_b]))
                    {
                        spherical_line_segment_from_polygon(&line_b, polygon_b, offset_b);
                        if (harp_spherical_line_spherical_line_relationship(&line_a, &line_b) !=
                            HARP_GEOMETRY_LINE_SEPARATE)
                        {
                            if (harp_spherical_line_spherical_line_relationship(&line_a, &line_b) ==
                                HARP_GEOMETRY_LINE_CROSS)
                            {
                                harp_spherical_point intersection;

                                if (point_b_in_polygon_a[offset_b])
                                {
                                    /* p = line b && q = line a */
                                    harp_spherical_line_spherical_line_intersection_point(&line_b, &line_a,
                                                                                          &intersection);
                                }
                                else
                                {
                                    /* p = line a && q = line b */
                                    harp_spherical_line_spherical_line_intersection_point(&line_a, &line_b,
                                                                                          &intersection);
                                }
                                assert(offset_c != num_intersection_points);
                                polygon_intersect->point[offset_c] = intersection;
                                offset_c++;
                            }
                            else
                            {
                                /* line segements are on the same great circle, so no intermediate point needed */
                                num_intersection_points--;
                                polygon_intersect->numberofpoints--;
                            }
                            if (!point_a_in_polygon_b[next_offset_a])
                            {
                                /* add points from polygon b */
                                if (point_b_in_polygon_a[next_offset_b])
                                {
                                    /* add in ascending order */
                                    while (point_b_in_polygon_a[next_offset_b] && next_offset_b != offset_b)
                                    {
                                        assert(offset_c != num_intersection_points);
                                        polygon_intersect->point[offset_c] = polygon_b->point[next_offset_b];
                                        offset_c++;
                                        next_offset_b++;
                                        if (next_offset_b == polygon_b->numberofpoints)
                                        {
                                            next_offset_b = 0;
                                        }
                                    }
                                }
                                else
                                {
                                    /* add in descending order */
                                    while (point_b_in_polygon_a[offset_b] && offset_b != next_offset_b)
                                    {
                                        assert(offset_c != num_intersection_points);
                                        polygon_intersect->point[offset_c] = polygon_b->point[offset_b];
                                        offset_c++;
                                        offset_b--;
                                        if (offset_b == -1)
                                        {
                                            offset_b = polygon_b->numberofpoints - 1;
                                        }
                                    }
                                }
                            }
                            break;
                        }
                    }
                    offset_b++;
                }
            }
            offset_a++;
        }

        free(point_a_in_polygon_b);
        free(point_b_in_polygon_a);

        if (harp_spherical_polygon_check(polygon_intersect) != 0)
        {
            harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "invalid intersection polygon");
            return -1;
        }

        /* Calculate areaAB = surface area of intersection polygon */
        spherical_polygon_get_surface_area(polygon_intersect, &area_ab);

        /* Calculate areaA = surface area of polygon A */
        spherical_polygon_get_surface_area(polygon_a, &area_a);

        /* Calculate areaB = surface area of polygon B */
        spherical_polygon_get_surface_area(polygon_b, &area_b);

        /* Overlapping fraction = areaAB / min(areaA, areaB) */
        min_area_a_area_b = (area_a < area_b ? area_a : area_b);
        assert(min_area_a_area_b >= 0.0);
        if (HARP_GEOMETRY_FPzero(min_area_a_area_b))
        {
            /* just set to 1 if area_a/area_b is too small */
            *overlapping_fraction = 1.0;
            *polygons_are_overlapping = 1;
        }
        else
        {
            *overlapping_fraction = area_ab / min_area_a_area_b;
            *polygons_are_overlapping = 1;
        }

        harp_spherical_polygon_delete(polygon_intersect);
    }
    else
    {
        /* No overlap */
        *overlapping_fraction = 0.0;
        *polygons_are_overlapping = 0;
    }

    return 0;
}

/* Given number of vertex points, return empty
 * spherical polygon data structure with points (lat,lon) in  [rad] */
int harp_spherical_polygon_new(int32_t numberofpoints, harp_spherical_polygon **polygon)
{
    size_t size = offsetof(harp_spherical_polygon, point) + sizeof(harp_spherical_point) * numberofpoints;

    *polygon = (harp_spherical_polygon *)malloc(size);
    if (*polygon == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)\n", size,
                       __FILE__, __LINE__);
        return -1;
    }
    (*polygon)->size = (int)size;
    (*polygon)->numberofpoints = numberofpoints;

    return 0;
}

void harp_spherical_polygon_delete(harp_spherical_polygon *polygon)
{
    free(polygon);
}

static int spherical_polygon_begin_end_point_equal(long measurement_id, long num_vertices,
                                                   const double *latitude_bounds, const double *longitude_bounds)
{
    long ii_begin, ii_end;
    double deg2rad = (double)(CONST_DEG2RAD);
    harp_spherical_point p_begin, p_end;

    /* Determine first and last index */
    ii_begin = measurement_id * num_vertices + 0;
    ii_end = measurement_id * num_vertices + num_vertices - 1;

    /* Get begin and end point */
    p_begin.lat = latitude_bounds[ii_begin] * deg2rad;
    p_begin.lon = longitude_bounds[ii_begin] * deg2rad;
    p_end.lat = latitude_bounds[ii_end] * deg2rad;
    p_end.lon = longitude_bounds[ii_end] * deg2rad;
    return harp_spherical_point_equal(&p_begin, &p_end);
}

/* Obtain spherical polygon from two double arrays with latitude_bounds [degree_north] and longitude_bounds [degree_east]
 * Make sure that the points are organized as follows:
 * - counter-clockwise (right-hand rule)
 * - no duplicate points (i.e. begin and end point must not be the same) */
int harp_spherical_polygon_from_latitude_longitude_bounds(long measurement_id, long num_vertices,
                                                          const double *latitude_bounds,
                                                          const double *longitude_bounds,
                                                          harp_spherical_polygon **new_polygon)
{
    harp_spherical_polygon *polygon = NULL;
    double deg2rad = (double)(CONST_DEG2RAD);
    int32_t num_points = (int32_t)num_vertices; /* Start with num_vertices */
    int32_t i;

    /* Check if the first and last spherical point of the polygon are equal */
    if (spherical_polygon_begin_end_point_equal(measurement_id, num_vertices, latitude_bounds, longitude_bounds))
    {
        /* If this is the case, do not include the last point */
        num_points--;
    }
    if (num_points <= 0)
    {
        harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "num_vertices must be larger than zero");
        return -1;
    }

    /* Create the polygon */
    if (harp_spherical_polygon_new(num_points, &polygon) != 0)
    {
        return -1;
    }

    for (i = 0; i < num_points; i++)
    {
        polygon->point[i].lat = latitude_bounds[measurement_id * num_vertices + i] * deg2rad;
        polygon->point[i].lon = longitude_bounds[measurement_id * num_vertices + i] * deg2rad;
        harp_spherical_point_check(&polygon->point[i]);
    }

    /* Check the polygon */
    if (harp_spherical_polygon_check(polygon) != 0)
    {
        harp_spherical_polygon_delete(polygon);
        return -1;
    }

    *new_polygon = polygon;
    return 0;
}

/** Determine whether a point is in an area on the surface of the Earth
 * \ingroup harp_geometry
 * This function assumes a spherical earth
 * \param latitude_point Latitude of the point
 * \param longitude_point Longitude of the point
 * \param num_vertices The number of vertices of the bounding polygon of the area
 * \param latitude_bounds Latitude values of the bounds of the area polygon
 * \param longitude_bounds Longitude values of the bounds of the area polygon
 * \param in_area Pointer to the C variable where the result will be stored (1 if point is in the area, 0 otherwise).
 * \return
 *   \arg \c 0, Success.
 *   \arg \c -1, Error occurred (check #harp_errno).
 */
LIBHARP_API int harp_geometry_has_point_in_area(double latitude_point, double longitude_point, int num_vertices,
                                                double *latitude_bounds, double *longitude_bounds, int *in_area)
{
    harp_spherical_point point;
    harp_spherical_polygon *polygon = NULL;

    point.lat = latitude_point;
    point.lon = longitude_point;
    harp_spherical_point_rad_from_deg(&point);
    harp_spherical_point_check(&point);

    if (harp_spherical_polygon_from_latitude_longitude_bounds(0, num_vertices, latitude_bounds, longitude_bounds,
                                                              &polygon) != 0)
    {
        return -1;
    }

    *in_area = harp_spherical_polygon_contains_point(polygon, &point);

    harp_spherical_polygon_delete(polygon);

    return 0;
}

/** Determine whether a point is in an area on the surface of the Earth
 * \ingroup harp_geometry
 * This function assumes a spherical earth.
 * The overlap fraction is calculated as area(intersection)/min(area(A),area(B)).
 * \param num_vertices_a The number of vertices of the bounding polygon of the first area
 * \param latitude_bounds_a Latitude values of the bounds of the area of the first polygon
 * \param longitude_bounds_a Longitude values of the bounds of the area of the first polygon
 * \param num_vertices_b The number of vertices of the bounding polygon of the second area
 * \param latitude_bounds_b Latitude values of the bounds of the area of the second polygon
 * \param longitude_bounds_b Longitude values of the bounds of the area of the second polygon
 * \param has_overlap Pointer to the C variable where the result will be stored (1 if there is overlap, 0 otherwise).
 * \param fraction Pointer to the C variable where the overlap fraction will be stored (use NULL if not needed).
 * \return
 *   \arg \c 0, Success.
 *   \arg \c -1, Error occurred (check #harp_errno).
 */
LIBHARP_API int harp_geometry_has_area_overlap(int num_vertices_a, double *latitude_bounds_a,
                                               double *longitude_bounds_a, int num_vertices_b,
                                               double *latitude_bounds_b, double *longitude_bounds_b, int *has_overlap,
                                               double *fraction)
{
    harp_spherical_polygon *polygon_a = NULL;
    harp_spherical_polygon *polygon_b = NULL;

    if (harp_spherical_polygon_from_latitude_longitude_bounds(0, num_vertices_a, latitude_bounds_a, longitude_bounds_a,
                                                              &polygon_a) != 0)
    {
        return -1;
    }
    if (harp_spherical_polygon_from_latitude_longitude_bounds(0, num_vertices_b, latitude_bounds_b, longitude_bounds_b,
                                                              &polygon_b) != 0)
    {
        return -1;
    }

    if (fraction != NULL)
    {
        /* Determine overlapping fraction */
        if (harp_spherical_polygon_overlapping_fraction(polygon_a, polygon_b, has_overlap, fraction) != 0)
        {
            harp_spherical_polygon_delete(polygon_a);
            harp_spherical_polygon_delete(polygon_b);
            return -1;
        }
    }
    else
    {
        if (harp_spherical_polygon_overlapping(polygon_a, polygon_b, has_overlap) != 0)
        {
            harp_spherical_polygon_delete(polygon_a);
            harp_spherical_polygon_delete(polygon_b);
            return -1;
        }
    }

    harp_spherical_polygon_delete(polygon_a);
    harp_spherical_polygon_delete(polygon_b);

    return 0;
}

/** Calculate the area size for a polygon on the surface of the Earth
 * \ingroup harp_geometry
 * This function assumes a spherical earth.
 * \param num_vertices The number of vertices of the bounding polygon
 * \param latitude_bounds Latitude values of the bounds of the polygon
 * \param longitude_bounds Longitude values of the bounds of the polygon
 * \param area Pointer to the C variable where the area size will be stored (in [m2]).
 * \return
 *   \arg \c 0, Success.
 *   \arg \c -1, Error occurred (check #harp_errno).
 */
LIBHARP_API int harp_geometry_get_area(int num_vertices, double *latitude_bounds, double *longitude_bounds,
                                       double *area)
{
    harp_spherical_polygon *polygon = NULL;

    if (harp_spherical_polygon_from_latitude_longitude_bounds(0, num_vertices, latitude_bounds, longitude_bounds,
                                                              &polygon) != 0)
    {
        return -1;
    }
    if (spherical_polygon_get_surface_area(polygon, area) != 0)
    {
        harp_spherical_polygon_delete(polygon);
        return -1;
    }

    harp_spherical_polygon_delete(polygon);

    return 0;
}