File: harp-ingest-cci_l4_o3_np.c

package info (click to toggle)
harp 1.5%2Bdata-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 54,032 kB
  • sloc: xml: 286,510; ansic: 143,710; yacc: 1,910; python: 913; makefile: 600; lex: 574; sh: 69
file content (687 lines) | stat: -rw-r--r-- 24,763 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/*
 * Copyright (C) 2015-2018 S[&]T, The Netherlands.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "coda.h"
#include "harp-constants.h"
#include "harp-ingestion.h"

#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

typedef struct ingest_info_struct
{
    coda_product *product;
    long num_time;
    long num_vertical;
    long num_latitude;
    long num_longitude;
} ingest_info;

static int read_date(ingest_info *info, const char *path, double *date)
{
    coda_cursor cursor;
    char buffer[17];
    long length;

    if (coda_cursor_set_product(&cursor, info->product) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_goto(&cursor, path) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_get_string_length(&cursor, &length) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (length != 16)
    {
        harp_set_error(HARP_ERROR_INGESTION, "datetime value has length %ld; expected 16 (yyyyMMdd'T'HHmmss'Z')",
                       length);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        return -1;
    }
    if (coda_cursor_read_string(&cursor, buffer, 17) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (strncmp(&buffer[9], "000000", 6) != 0)
    {
        harp_set_error(HARP_ERROR_INGESTION, "datetime value '%s' is not a pure date (the time part is non-zero)",
                       buffer);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        return -1;
    }
    if (coda_time_string_to_double("yyyyMMdd'T'HHmmss'Z'", buffer, date) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        return -1;
    }

    return 0;
}

static int init_dimensions(ingest_info *info)
{
    coda_cursor cursor;
    long coda_dim[CODA_MAX_NUM_DIMS];
    int num_coda_dims;

    if (coda_cursor_set_product(&cursor, info->product) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }

    if (coda_cursor_goto(&cursor, "/time") != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_get_array_dim(&cursor, &num_coda_dims, coda_dim) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (num_coda_dims != 1)
    {
        harp_set_error(HARP_ERROR_INGESTION, "dataset has %d dimensions; expected 1", num_coda_dims);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        return -1;
    }
    info->num_time = coda_dim[0];

    if (coda_cursor_goto(&cursor, "/lon") != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_get_array_dim(&cursor, &num_coda_dims, coda_dim) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (num_coda_dims != 1)
    {
        harp_set_error(HARP_ERROR_INGESTION, "dataset has %d dimensions; expected 1", num_coda_dims);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        return -1;
    }
    info->num_longitude = coda_dim[0];

    if (coda_cursor_goto(&cursor, "/lat") != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_get_array_dim(&cursor, &num_coda_dims, coda_dim) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (num_coda_dims != 1)
    {
        harp_set_error(HARP_ERROR_INGESTION, "dataset has %d dimensions; expected 1", num_coda_dims);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        return -1;
    }
    info->num_latitude = coda_dim[0];

    if (coda_cursor_goto(&cursor, "/layers") != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_get_array_dim(&cursor, &num_coda_dims, coda_dim) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (num_coda_dims != 1)
    {
        harp_set_error(HARP_ERROR_INGESTION, "dataset has %d dimensions; expected 1", num_coda_dims);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        return -1;
    }
    info->num_vertical = coda_dim[0];

    return 0;
}

static void ingestion_done(void *user_data)
{
    free(user_data);
}

static int ingestion_init(const harp_ingestion_module *module, coda_product *product,
                          const harp_ingestion_options *options, harp_product_definition **definition, void **user_data)
{
    ingest_info *info;

    (void)options;

    info = malloc(sizeof(ingest_info));
    if (info == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       sizeof(ingest_info), __FILE__, __LINE__);
        return -1;
    }
    info->product = product;

    if (init_dimensions(info) != 0)
    {
        ingestion_done(info);
        return -1;
    }

    *definition = *module->product_definition;
    *user_data = info;

    return 0;
}

static int read_dataset(ingest_info *info, const char *path, harp_data_type data_type, long num_elements,
                        harp_array data)
{
    coda_cursor cursor;
    harp_scalar fill_value;
    long coda_num_elements;

    if (coda_cursor_set_product(&cursor, info->product) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_goto(&cursor, path) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_cursor_get_num_elements(&cursor, &coda_num_elements) != 0)
    {
        harp_set_error(HARP_ERROR_CODA, NULL);
        return -1;
    }
    if (coda_num_elements != num_elements)
    {
        harp_set_error(HARP_ERROR_INGESTION, "dataset has %ld elements (expected %ld)", coda_num_elements,
                       num_elements);
        harp_add_coda_cursor_path_to_error_message(&cursor);
        harp_add_error_message(" (%s:%lu)", __FILE__, __LINE__);
        return -1;
    }

    switch (data_type)
    {
        case harp_type_float:
            if (coda_cursor_read_float_array(&cursor, data.float_data, coda_array_ordering_c) != 0)
            {
                harp_set_error(HARP_ERROR_CODA, NULL);
                return -1;
            }
            if (coda_cursor_goto(&cursor, "@FillValue") == 0)
            {
                if (coda_cursor_read_float(&cursor, &fill_value.float_data) != 0)
                {
                    harp_set_error(HARP_ERROR_CODA, NULL);
                    return -1;
                }

                harp_array_replace_fill_value(data_type, num_elements, data, fill_value);
            }
            break;
        case harp_type_double:
            if (coda_cursor_read_double_array(&cursor, data.double_data, coda_array_ordering_c) != 0)
            {
                harp_set_error(HARP_ERROR_CODA, NULL);
                return -1;
            }
            if (coda_cursor_goto(&cursor, "@FillValue") == 0)
            {
                if (coda_cursor_read_double(&cursor, &fill_value.double_data) != 0)
                {
                    harp_set_error(HARP_ERROR_CODA, NULL);
                    return -1;
                }

                harp_array_replace_fill_value(data_type, num_elements, data, fill_value);
            }
            break;
        default:
            assert(0);
            exit(1);
    }

    return 0;
}

static int read_and_reorder_dataset_4d(ingest_info *info, const char *path, harp_data_type data_type, harp_array data)
{
    int order[4] = { 0, 3, 1, 2 };
    long dimension[4];

    dimension[0] = info->num_time;
    dimension[1] = info->num_vertical;
    dimension[2] = info->num_latitude;
    dimension[3] = info->num_longitude;
    if (read_dataset(info, path, data_type, harp_get_num_elements(4, dimension), data) != 0)
    {
        return -1;
    }

    /* Reorder array dimensions from [num_time, num_vertical, num_latitude, num_longitude] to [num_time, num_latitude,
     * num_longitude, num_vertical].
     */
    if (harp_array_transpose(data_type, 4, dimension, order, data) != 0)
    {
        return -1;
    }

    return 0;
}

static int read_dimensions(void *user_data, long dimension[HARP_NUM_DIM_TYPES])
{
    ingest_info *info = (ingest_info *)user_data;

    dimension[harp_dimension_time] = info->num_time;
    dimension[harp_dimension_latitude] = info->num_latitude;
    dimension[harp_dimension_longitude] = info->num_longitude;
    dimension[harp_dimension_vertical] = info->num_vertical;

    return 0;
}

static int read_datetime(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;
    double epoch;
    long i;

    if (read_date(info, "/@time_coverage_start", &epoch) != 0)
    {
        return -1;
    }

    if (read_dataset(info, "/time", harp_type_double, info->num_time, data) != 0)
    {
        return -1;
    }

    for (i = 0; i < info->num_time; i++)
    {
        data.double_data[i] = (data.double_data[i] * CONST_HOUR) + epoch;
    }

    return 0;
}

static int read_longitude(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_dataset(info, "/lon", harp_type_float, info->num_longitude, data);
}

static int read_latitude(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_dataset(info, "/lat", harp_type_float, info->num_latitude, data);
}

static int read_geopotential_height(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_and_reorder_dataset_4d(info, "/Gph", harp_type_float, data);
}

static int read_temperature(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_and_reorder_dataset_4d(info, "/Temperature", harp_type_float, data);
}

static int read_pressure(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;
    harp_array hybride_coef_a;
    harp_array hybride_coef_b;
    long num_profiles;
    long i;

    num_profiles = info->num_time * info->num_latitude * info->num_longitude;

    /* The air pressure is interpolated from the position dependent surface air pressure (/Psurf[]) using a position
     * independent set of coefficients (/Hybride_coef_fa[], /Hybride_coef_fb[]).
     */
    hybride_coef_a.ptr = malloc(info->num_vertical * sizeof(float));
    if (hybride_coef_a.ptr == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       info->num_vertical * sizeof(float), __FILE__, __LINE__);
        return -1;
    }

    hybride_coef_b.ptr = malloc(info->num_vertical * sizeof(float));
    if (hybride_coef_b.ptr == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       info->num_vertical * sizeof(float), __FILE__, __LINE__);
        free(hybride_coef_a.ptr);
        return -1;
    }

    if (read_dataset(info, "/Hybride_coef_fa", harp_type_float, info->num_vertical, hybride_coef_a) != 0)
    {
        free(hybride_coef_b.ptr);
        free(hybride_coef_a.ptr);
        return -1;
    }

    if (read_dataset(info, "/Hybride_coef_fb", harp_type_float, info->num_vertical, hybride_coef_b) != 0)
    {
        free(hybride_coef_b.ptr);
        free(hybride_coef_a.ptr);
        return -1;
    }

    if (read_dataset(info, "/Psurf", harp_type_float, num_profiles, data) != 0)
    {
        free(hybride_coef_b.ptr);
        free(hybride_coef_a.ptr);
        return -1;
    }

    for (i = num_profiles - 1; i >= 0; i--)
    {
        float *profile = data.float_data + i * info->num_vertical;      /* pressure profile for specific time, lat, lon */
        float surface_pressure = data.float_data[i];    /* surface pressure at specific time, lat, lon */
        long j;

        for (j = info->num_vertical - 1; j >= 0; j--)
        {
            profile[j] = hybride_coef_a.float_data[j] + hybride_coef_b.float_data[j] * surface_pressure;
        }
    }

    free(hybride_coef_b.ptr);
    free(hybride_coef_a.ptr);

    return 0;
}

static int read_pressure_bounds(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;
    harp_array hybride_coef_a;
    harp_array hybride_coef_b;
    long num_profiles;
    long num_levels;
    long i;

    num_profiles = info->num_time * info->num_latitude * info->num_longitude;
    num_levels = info->num_vertical + 1;

    /* The air pressure boundaries are interpolated from the position dependent surface air pressure (/Psurf[]) using a
     * position independent set of coefficients (/Hybride_coef_a[], /Hybride_coef_b[]).
     */
    hybride_coef_a.ptr = malloc(num_levels * sizeof(float));
    if (hybride_coef_a.ptr == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       num_levels * sizeof(float), __FILE__, __LINE__);
        return -1;
    }

    hybride_coef_b.ptr = malloc(num_levels * sizeof(float));
    if (hybride_coef_b.ptr == NULL)
    {
        harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
                       num_levels * sizeof(float), __FILE__, __LINE__);
        free(hybride_coef_a.ptr);
        return -1;
    }

    if (read_dataset(info, "/Hybride_coef_a", harp_type_float, num_levels, hybride_coef_a) != 0)
    {
        free(hybride_coef_b.ptr);
        free(hybride_coef_a.ptr);
        return -1;
    }

    if (read_dataset(info, "/Hybride_coef_b", harp_type_float, num_levels, hybride_coef_b) != 0)
    {
        free(hybride_coef_b.ptr);
        free(hybride_coef_a.ptr);
        return -1;
    }

    if (read_dataset(info, "/Psurf", harp_type_float, num_profiles, data) != 0)
    {
        free(hybride_coef_b.ptr);
        free(hybride_coef_a.ptr);
        return -1;
    }

    for (i = num_profiles - 1; i >= 0; i--)
    {
        float *bounds = data.float_data + i * info->num_vertical * 2;   /* bounds for specific time, lat, lon */
        float surface_pressure = data.float_data[i];    /* surface pressure at specific time, lat, lon */
        long j;

        bounds[(info->num_vertical - 1) * 2 + 1] =
            hybride_coef_a.float_data[info->num_vertical] +
            hybride_coef_b.float_data[info->num_vertical] * surface_pressure;

        for (j = info->num_vertical - 1; j > 0; j--)
        {
            bounds[j * 2] = bounds[(j - 1) * 2 + 1] =
                hybride_coef_a.float_data[j] + hybride_coef_b.float_data[j] * surface_pressure;
        }

        bounds[0] = hybride_coef_a.float_data[0] + hybride_coef_b.float_data[0] * surface_pressure;
    }

    free(hybride_coef_b.ptr);
    free(hybride_coef_a.ptr);

    return 0;
}

static int read_O3_column_number_density(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_and_reorder_dataset_4d(info, "/O3_dens", harp_type_float, data);
}

static int read_O3_column_number_density_uncertainty(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_and_reorder_dataset_4d(info, "/O3s_dens", harp_type_float, data);
}

static int read_O3_volume_mixing_ratio(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_and_reorder_dataset_4d(info, "/O3_vmr", harp_type_float, data);
}

static int read_O3_volume_mixing_ratio_uncertainty(void *user_data, harp_array data)
{
    ingest_info *info = (ingest_info *)user_data;

    return read_and_reorder_dataset_4d(info, "/O3s_vmr", harp_type_float, data);
}

int harp_ingestion_module_cci_l4_o3_np_init(void)
{
    harp_ingestion_module *module;
    harp_product_definition *product_definition;
    harp_variable_definition *variable_definition;
    harp_dimension_type datetime_dimension_type[1] = { harp_dimension_time };
    harp_dimension_type longitude_dimension_type[1] = { harp_dimension_longitude };
    harp_dimension_type latitude_dimension_type[1] = { harp_dimension_latitude };
    harp_dimension_type dimension_type[5] = { harp_dimension_time, harp_dimension_latitude, harp_dimension_longitude,
        harp_dimension_vertical, harp_dimension_independent
    };
    long pressure_bounds_dimension[5] = { -1, -1, -1, -1, 2 };
    const char *description;
    const char *path;

    module = harp_ingestion_register_module_coda("ESACCI_OZONE_L4_NP", "Ozone CCI", "ESACCI_OZONE", "L4_NP",
                                                 "CCI L4 O3 nadir profile", ingestion_init, ingestion_done);

    /* ESACCI_OZONE_L4_NP product */
    product_definition = harp_ingestion_register_product(module, "ESACCI_OZONE_L4_NP", NULL, read_dimensions);

    /* datetime */
    description = "time of the measurement";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "datetime", harp_type_double, 1,
                                                   datetime_dimension_type, NULL, description,
                                                   "seconds since 2000-01-01", NULL, read_datetime);
    path = "/@time_coverage_start, /time[]";
    description = "datetime converted from time in hours (time[]) since the start of the product "
        "(@time_coverage_start) to seconds since 2000-01-01";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, description);

    /* longitude */
    description = "longitude of the grid cell center";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "longitude", harp_type_float, 1,
                                                   longitude_dimension_type, NULL, description, "degree_east", NULL,
                                                   read_longitude);
    path = "/lon[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);

    /* latitude */
    description = "latitude of the grid cell center";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "latitude", harp_type_float, 1,
                                                   latitude_dimension_type, NULL, description, "degree_north", NULL,
                                                   read_latitude);
    harp_variable_definition_set_valid_range_float(variable_definition, -90.0f, 90.0f);
    path = "/lat[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);

    /* geopotential_height */
    description = "geopotential height";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "geopotential_height", harp_type_float, 4,
                                                   dimension_type, NULL, description, "m", NULL,
                                                   read_geopotential_height);
    path = "/Gph[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);

    /* temperature */
    description = "temperature";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "temperature", harp_type_float, 4,
                                                   dimension_type, NULL, description, "K", NULL, read_temperature);
    path = "/Temperature[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);

    /* pressure */
    description = "air pressure profile";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "pressure", harp_type_float, 4, dimension_type,
                                                   NULL, description, "Pa", NULL, read_pressure);
    description = "pressure at the center of layer k is derived from surface air pressure as: Hybride_coef_fa[k] + "
        "Hybride_coef_fb[k] * Psurf[]";
    path = "/Psurf[], /Hybride_coef_fa[], /Hybride_coef_fb[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, description);

    /* pressure_bounds */
    description = "air pressure boundaries for each profile layer";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "pressure_bounds", harp_type_float, 5,
                                                   dimension_type, pressure_bounds_dimension, description, "Pa", NULL,
                                                   read_pressure_bounds);
    description = "pressure at level m is derived from surface air pressure as: Hybride_coef_a[m] + Hybride_coef_b[m] "
        "* Psurf[]";
    path = "/Psurf[], /Hybride_coef_a[], /Hybride_coef_b[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, description);

    /* O3_column_number_density */
    description = "O3 column number density";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "O3_column_number_density", harp_type_float, 4,
                                                   dimension_type, NULL, description, "molec/m^2", NULL,
                                                   read_O3_column_number_density);
    path = "/O3_dens[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);

    /* O3_column_number_density_uncertainty */
    description = "uncertainty of the O3 column number density";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "O3_column_number_density_uncertainty",
                                                   harp_type_float, 4, dimension_type, NULL, description, "molec/m^2",
                                                   NULL, read_O3_column_number_density_uncertainty);
    path = "/O3s_dens[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);


    /* O3_volume_mixing_ratio */
    description = "O3 volume mixing ratio";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "O3_volume_mixing_ratio", harp_type_float, 4,
                                                   dimension_type, NULL, description, HARP_UNIT_DIMENSIONLESS, NULL,
                                                   read_O3_volume_mixing_ratio);
    path = "/O3_vmr[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);

    /* O3_volume_mixing_ratio_uncertainty */
    description = "uncertainty of the O3 volume mixing ratio";
    variable_definition =
        harp_ingestion_register_variable_full_read(product_definition, "O3_volume_mixing_ratio_uncertainty",
                                                   harp_type_float, 4, dimension_type, NULL, description,
                                                   HARP_UNIT_DIMENSIONLESS, NULL,
                                                   read_O3_volume_mixing_ratio_uncertainty);
    path = "/O3s_vmr[]";
    harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);

    return 0;
}