1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
|
/*
* Copyright (C) 2015-2018 S[&]T, The Netherlands.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "coda.h"
#include "harp-ingestion.h"
#include "harp-geometry.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct ingest_info_struct
{
coda_product *product;
int num_main;
int num_mdr;
coda_cursor *mdr_cursor; /* pointers to earthshine records */
int buffered_scan_id; /* we buffer the calculated corner coordinates for each 2x2 scan */
double corner_latitude[4 * 4];
double corner_longitude[4 * 4];
} ingest_info;
static int init_mdr_cursor(ingest_info *info)
{
coda_cursor cursor;
long num_applicable_mdr;
long num_mdr;
long i;
/* There are max 32 measurements per scan.
* Even though the lowest integration time of a measurement is 93.75ms and the total scan takes 6s there will never
* be 64 measurements in a scan! For measurements with 93.75ms integration time only half the measurements will
* ever be stored and the associated ground pixel is half that of the 187.5ms ground pixel (with gaps for the other
* half). The available 93.75ms measurement covers the latter half of a 187.5ms ground pixel.
*
* For GOME2 L1b records the scans and mdrs do not correspond 1-to-1. An MDR is slightly shifted with regard to a
* scan in the sense that the last measurement of a scan can be found as first measurement in the next MDR.
*/
if (coda_cursor_set_product(&cursor, info->product) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_goto_record_field_by_name(&cursor, "MDR") != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_get_num_elements(&cursor, &num_mdr) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (num_mdr == 0)
{
/* no data */
harp_set_error(HARP_ERROR_NO_DATA, NULL);
return -1;
}
info->mdr_cursor = malloc(num_mdr * sizeof(coda_cursor));
if (info->mdr_cursor == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
num_mdr * sizeof(coda_cursor), __FILE__, __LINE__);
return -1;
}
num_applicable_mdr = 0; /* we only count real MDRs (i.e. excluding Dummy records) with the appropriate data */
if (coda_cursor_goto_first_array_element(&cursor) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
for (i = 0; i < num_mdr; i++)
{
int is_mdr;
if (coda_cursor_get_record_field_available_status(&cursor, 0, &is_mdr) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (is_mdr)
{
if (coda_cursor_goto_record_field_by_index(&cursor, 0) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
info->mdr_cursor[num_applicable_mdr] = cursor;
coda_cursor_goto_parent(&cursor);
num_applicable_mdr++;
}
if (i < num_mdr - 1)
{
if (coda_cursor_goto_next_array_element(&cursor) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
}
}
if (num_applicable_mdr == 0)
{
/* no data */
harp_set_error(HARP_ERROR_NO_DATA, NULL);
return -1;
}
info->num_mdr = num_applicable_mdr;
/* there are 120 measurements per MDR */
info->num_main = 120 * num_applicable_mdr;
return 0;
}
static int read_dimensions(void *user_data, long dimension[HARP_NUM_DIM_TYPES])
{
ingest_info *info = (ingest_info *)user_data;
dimension[harp_dimension_time] = info->num_main;
return 0;
}
static int read_time(void *user_data, long index, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
coda_cursor cursor;
cursor = info->mdr_cursor[index / 120];
if (coda_cursor_goto(&cursor, "RECORD_HEADER/RECORD_START_TIME") != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_read_double(&cursor, data.double_data) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
*data.double_data += +((int)((index % 120) / 4)) * 8 / 37;
return 0;
}
static int read_orbit_index(void *user_data, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
coda_cursor cursor;
if (coda_cursor_set_product(&cursor, info->product) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_goto(&cursor, "/MPHR/ORBIT_START") != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_read_int32(&cursor, data.int32_data) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
return 0;
}
static int read_latitude(void *user_data, long index, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
coda_cursor cursor;
cursor = info->mdr_cursor[index / 120];
if (coda_cursor_goto_record_field_by_name(&cursor, "EARTH_LOCATION") != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
/* flat index in [120,2] array */
if (coda_cursor_goto_array_element_by_index(&cursor, (index % 120) * 2) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_read_double(&cursor, data.double_data) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
return 0;
}
static int read_longitude(void *user_data, long index, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
coda_cursor cursor;
cursor = info->mdr_cursor[index / 120];
if (coda_cursor_goto_record_field_by_name(&cursor, "EARTH_LOCATION") != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
/* flat index in [120,2] array */
if (coda_cursor_goto_array_element_by_index(&cursor, (index % 120) * 2 + 1) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_read_double(&cursor, data.double_data) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
return 0;
}
static int get_corner_coordinates(ingest_info *info, long scan_id)
{
double latlong[4 * 2];
double center_latitude;
double center_longitude;
double outer_latitude[4];
double outer_longitude[4];
coda_cursor cursor;
int i;
cursor = info->mdr_cursor[scan_id / 30];
if (coda_cursor_goto_record_field_by_name(&cursor, "EARTH_LOCATION") != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
/* read 4 lat/long pairs (using flat index) from [120,2] array */
if (coda_cursor_goto_array_element_by_index(&cursor, (scan_id % 30) * 4 * 2) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
for (i = 0; i < 8; i++)
{
if (coda_cursor_read_double(&cursor, &latlong[i]) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (i < 8 - 1)
{
if (coda_cursor_goto_next_array_element(&cursor) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
}
}
/* The 2x2 elements in a scan are stored in the product in the order:
* - bottom right
* - top right
* - top left
* - bottom left
* The scans within a scan line go from left to right with increasing time.
* The bottom is defined as 'first in flight direction' and the top as 'last in flight direction'.
*/
/* calculate the center point of the scan */
harp_geographic_intersection(latlong[6], latlong[7], latlong[2], latlong[3], latlong[0], latlong[1], latlong[4],
latlong[5], ¢er_latitude, ¢er_longitude);
/* extrapolate the center point outwards to each of the four corners
* i.e. the outer latitude/longitude points are twice as far from the center point as the mid points of the four
* elements.
*/
harp_geographic_extrapolation(latlong[0], latlong[1], center_latitude, center_longitude,
&(outer_latitude[0]), &(outer_longitude[0]));
harp_geographic_extrapolation(latlong[2], latlong[3], center_latitude, center_longitude,
&(outer_latitude[1]), &(outer_longitude[1]));
harp_geographic_extrapolation(latlong[4], latlong[5], center_latitude, center_longitude,
&(outer_latitude[2]), &(outer_longitude[2]));
harp_geographic_extrapolation(latlong[6], latlong[7], center_latitude, center_longitude,
&(outer_latitude[3]), &(outer_longitude[3]));
/* the inner corner coordinate (i.e. the one nearest to the center point of the scan) for each of the elements
* is chosen as the interpolation between the center point of the opposite element and the outer point of the
* current element:
*
* outer_2
* \
* outer_corner_2
* \
* center_2
* \
* inner_corner_2
* \
* center_scan
* \
* inner_corner_0
* \
* center_0
* \
* outer_corner_0
* \
* outer_0
*
* In this case inner_corner_0 is the interpolation of outer_0 and center_2 and inner_corner_2 is the interpolation
* of outer_2 and center_0.
* The distance (center_scan, inner_corner_element) will then be half the distance (center_scan, center_element)
* and the distance (center_scan, outer_corner_element) will be 1.5 the distance (center_scan, center_element)
*/
harp_geographic_average(outer_latitude[0], outer_longitude[0], latlong[4], latlong[5],
&info->corner_latitude[0 + 3], &info->corner_longitude[0 + 3]);
harp_geographic_average(outer_latitude[1], outer_longitude[1], latlong[6], latlong[7],
&info->corner_latitude[4 + 0], &info->corner_longitude[4 + 0]);
harp_geographic_average(outer_latitude[2], outer_longitude[2], latlong[0], latlong[1],
&info->corner_latitude[8 + 1], &info->corner_longitude[8 + 1]);
harp_geographic_average(outer_latitude[3], outer_longitude[3], latlong[2], latlong[3],
&info->corner_latitude[12 + 2], &info->corner_longitude[12 + 2]);
/* The outer corner coordinate is the interpolation of the outer coordinate of an element with its center
* coordinate.
*/
harp_geographic_average(outer_latitude[0], outer_longitude[0], latlong[0], latlong[1],
&info->corner_latitude[0 + 1], &info->corner_longitude[0 + 1]);
harp_geographic_average(outer_latitude[1], outer_longitude[1], latlong[2], latlong[3],
&info->corner_latitude[4 + 2], &info->corner_longitude[4 + 2]);
harp_geographic_average(outer_latitude[2], outer_longitude[2], latlong[4], latlong[5],
&info->corner_latitude[8 + 3], &info->corner_longitude[8 + 3]);
harp_geographic_average(outer_latitude[3], outer_longitude[3], latlong[6], latlong[7],
&info->corner_latitude[12 + 0], &info->corner_longitude[12 + 0]);
/* the other corner coordinates are calculated by finding the intersection of the greatcircle through two
* innner corner coordinates and the greatcircle through two outer corner coordinates.
* Mind that the 4 elements of a scan are ordered according to:
*
* 2 - 1
* | |
* 3 - 0
*
* while the corner coordinates of each element are ordered according to (using the first in time / first in flight
* convention):
*
* 3 - 2
* | |
* 0 - 1
*
*/
harp_geographic_intersection(info->corner_latitude[12 + 2], info->corner_longitude[12 + 2],
info->corner_latitude[0 + 3], info->corner_longitude[0 + 3],
info->corner_latitude[0 + 1], info->corner_longitude[0 + 1],
info->corner_latitude[4 + 2], info->corner_longitude[4 + 2],
&info->corner_latitude[0 + 2], &info->corner_longitude[0 + 2]);
harp_geographic_intersection(info->corner_latitude[12 + 0], info->corner_longitude[12 + 0],
info->corner_latitude[0 + 1], info->corner_longitude[0 + 1],
info->corner_latitude[0 + 3], info->corner_longitude[0 + 3],
info->corner_latitude[4 + 0], info->corner_longitude[4 + 0],
&info->corner_latitude[0 + 0], &info->corner_longitude[0 + 0]);
harp_geographic_intersection(info->corner_latitude[0 + 3], info->corner_longitude[0 + 3],
info->corner_latitude[4 + 0], info->corner_longitude[4 + 0],
info->corner_latitude[4 + 2], info->corner_longitude[4 + 2],
info->corner_latitude[8 + 3], info->corner_longitude[8 + 3],
&info->corner_latitude[4 + 3], &info->corner_longitude[4 + 3]);
harp_geographic_intersection(info->corner_latitude[0 + 1], info->corner_longitude[0 + 1],
info->corner_latitude[4 + 2], info->corner_longitude[4 + 2],
info->corner_latitude[4 + 0], info->corner_longitude[4 + 0],
info->corner_latitude[8 + 1], info->corner_longitude[8 + 1],
&info->corner_latitude[4 + 1], &info->corner_longitude[4 + 1]);
harp_geographic_intersection(info->corner_latitude[4 + 0], info->corner_longitude[4 + 0],
info->corner_latitude[8 + 1], info->corner_longitude[8 + 1],
info->corner_latitude[8 + 3], info->corner_longitude[8 + 3],
info->corner_latitude[12 + 0], info->corner_longitude[12 + 0],
&info->corner_latitude[8 + 0], &info->corner_longitude[8 + 0]);
harp_geographic_intersection(info->corner_latitude[4 + 2], info->corner_longitude[4 + 2],
info->corner_latitude[8 + 3], info->corner_longitude[8 + 3],
info->corner_latitude[8 + 1], info->corner_longitude[8 + 1],
info->corner_latitude[12 + 2], info->corner_longitude[12 + 2],
&info->corner_latitude[8 + 2], &info->corner_longitude[8 + 2]);
harp_geographic_intersection(info->corner_latitude[8 + 1], info->corner_longitude[8 + 1],
info->corner_latitude[12 + 2], info->corner_longitude[12 + 2],
info->corner_latitude[12 + 0], info->corner_longitude[12 + 0],
info->corner_latitude[0 + 1], info->corner_longitude[0 + 1],
&info->corner_latitude[12 + 1], &info->corner_longitude[12 + 1]);
harp_geographic_intersection(info->corner_latitude[8 + 3], info->corner_longitude[8 + 3],
info->corner_latitude[12 + 0], info->corner_longitude[12 + 0],
info->corner_latitude[12 + 2], info->corner_longitude[12 + 2],
info->corner_latitude[0 + 3], info->corner_longitude[0 + 3],
&info->corner_latitude[12 + 3], &info->corner_longitude[12 + 3]);
return 0;
}
static int read_corner_latitude(void *user_data, long index, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
long scan_id;
scan_id = index / 4;
if (info->buffered_scan_id != scan_id)
{
if (get_corner_coordinates(info, scan_id) != 0)
{
return -1;
}
info->buffered_scan_id = scan_id;
}
data.double_data[0] = info->corner_latitude[(index % 4) * 4 + 0];
data.double_data[1] = info->corner_latitude[(index % 4) * 4 + 1];
data.double_data[2] = info->corner_latitude[(index % 4) * 4 + 2];
data.double_data[3] = info->corner_latitude[(index % 4) * 4 + 3];
return 0;
}
static int read_corner_longitude(void *user_data, long index, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
long scan_id;
scan_id = index / 4;
if (info->buffered_scan_id != scan_id)
{
if (get_corner_coordinates(info, scan_id) != 0)
{
return -1;
}
info->buffered_scan_id = scan_id;
}
data.double_data[0] = info->corner_longitude[(index % 4) * 4 + 0];
data.double_data[1] = info->corner_longitude[(index % 4) * 4 + 1];
data.double_data[2] = info->corner_longitude[(index % 4) * 4 + 2];
data.double_data[3] = info->corner_longitude[(index % 4) * 4 + 3];
return 0;
}
static int get_angle_data(void *user_data, long index, int angle_id, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
coda_cursor cursor;
cursor = info->mdr_cursor[index / 120];
if (coda_cursor_goto_record_field_by_name(&cursor, "ANGULAR_RELATION") != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
/* flat index in [120,4] array */
if (coda_cursor_goto_array_element_by_index(&cursor, (index % 120) * 4 + angle_id) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_read_double(&cursor, data.double_data) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
return 0;
}
static int read_solar_zenith_angle(void *user_data, long index, harp_array data)
{
return get_angle_data(user_data, index, 0, data);
}
static int read_sensor_zenith_angle(void *user_data, long index, harp_array data)
{
return get_angle_data(user_data, index, 1, data);
}
static int read_solar_azimuth_angle(void *user_data, long index, harp_array data)
{
return get_angle_data(user_data, index, 2, data);
}
static int read_sensor_azimuth_angle(void *user_data, long index, harp_array data)
{
return get_angle_data(user_data, index, 3, data);
}
static int get_species_data(void *user_data, long index, const char *fieldname, harp_array data)
{
ingest_info *info = (ingest_info *)user_data;
coda_cursor cursor;
cursor = info->mdr_cursor[index / 120];
if (coda_cursor_goto_record_field_by_name(&cursor, fieldname) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_goto_array_element_by_index(&cursor, (index % 120)) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
if (coda_cursor_read_double(&cursor, data.double_data) != 0)
{
harp_set_error(HARP_ERROR_CODA, NULL);
return -1;
}
return 0;
}
static int read_o3_column(void *user_data, long index, harp_array data)
{
return get_species_data(user_data, index, "INTEGRATED_OZONE", data);
}
static int read_n2o_column(void *user_data, long index, harp_array data)
{
return get_species_data(user_data, index, "INTEGRATED_N2O", data);
}
static int read_co_column(void *user_data, long index, harp_array data)
{
return get_species_data(user_data, index, "INTEGRATED_CO", data);
}
static int read_ch4_column(void *user_data, long index, harp_array data)
{
return get_species_data(user_data, index, "INTEGRATED_CH4", data);
}
static int read_co2_column(void *user_data, long index, harp_array data)
{
return get_species_data(user_data, index, "INTEGRATED_CO2", data);
}
static int read_scan_subindex(void *user_data, long index, harp_array data)
{
(void)user_data;
*data.int8_data = (int8_t)(index % 120);
return 0;
}
static void ingestion_done(void *user_data)
{
ingest_info *info = (ingest_info *)user_data;
if (info->mdr_cursor != NULL)
{
free(info->mdr_cursor);
}
free(info);
}
static int ingestion_init(const harp_ingestion_module *module, coda_product *product,
const harp_ingestion_options *options, harp_product_definition **definition, void **user_data)
{
ingest_info *info;
(void)options;
info = malloc(sizeof(ingest_info));
if (info == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
sizeof(ingest_info), __FILE__, __LINE__);
return -1;
}
info->product = product;
info->mdr_cursor = NULL;
info->buffered_scan_id = -1;
if (init_mdr_cursor(info) != 0)
{
ingestion_done(info);
return -1;
}
*definition = *module->product_definition;
*user_data = info;
return 0;
}
int harp_ingestion_module_iasi_l2_init(void)
{
harp_ingestion_module *module;
harp_product_definition *product_definition;
harp_variable_definition *variable_definition;
harp_dimension_type dimension_type[1] = { harp_dimension_time };
harp_dimension_type dimension_type_bounds[2] = { harp_dimension_time, harp_dimension_independent };
long dimension_bounds[2] = { -1, 4 };
const char *description;
const char *path;
module =
harp_ingestion_register_module_coda("IASI_L2", "IASI", "EPS", "IASI_SND_02", "IASI L2 total column densities",
ingestion_init, ingestion_done);
product_definition =
harp_ingestion_register_product(module, "IASI_L2", "IASI L2 total column densities", read_dimensions);
/* datetime */
description = "The time of the measurement at end of integration time";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "datetime", harp_type_double, 1,
dimension_type, NULL, description, "seconds since 2000-01-01",
NULL, read_time);
path = "/MDR[]/MDR/RECORD_HEADER/RECORD_START_TIME";
description = "The time for a scan is the MDR start time + the scan id (0..29) times 8 / 37. Each part of the 2x2 "
"matrix of a scan will get assigned the same measurement time (i.e. there are 30 unique time values "
"per mdr)";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, description);
/* orbit_index */
description = "absolute orbit number";
variable_definition =
harp_ingestion_register_variable_full_read(product_definition, "orbit_index", harp_type_int32, 0, NULL, NULL,
description, NULL, NULL, read_orbit_index);
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, "/MPHR/ORBIT_START", NULL);
/* longitude */
description = "center longitude of the measurement";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "longitude", harp_type_double, 1,
dimension_type, NULL, description, "degree_east", NULL,
read_longitude);
harp_variable_definition_set_valid_range_double(variable_definition, -180.0, 180.0);
path = "/MDR[]/MDR/EARTH_LOCATION[,1]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* latitude */
description = "center latitude of the measurement";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "latitude", harp_type_double, 1,
dimension_type, NULL, description, "degree_north", NULL,
read_latitude);
harp_variable_definition_set_valid_range_double(variable_definition, -90.0, 90.0);
path = "/MDR[]/MDR/EARTH_LOCATION[,0]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* longitude_bounds */
description = "corner longitudes of the measurement";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "longitude_bounds", harp_type_double, 2,
dimension_type_bounds, dimension_bounds, description,
"degree_east", NULL, read_corner_longitude);
harp_variable_definition_set_valid_range_double(variable_definition, -180.0, 180.0);
path = "/MDR[]/MDR/EARTH_LOCATION[]";
description = "the corner coordinates are rough estimates of the circle areas for the scan elements; the size of "
"a scan element (in a certain direction) is taken to be half the distance, from center to center, "
"from a scan element to its nearest neighboring scan element";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, description);
/* latitude_bounds */
description = "corner latitudes of the measurement";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "latitude_bounds", harp_type_double, 2,
dimension_type_bounds, dimension_bounds, description,
"degree_north", NULL, read_corner_latitude);
harp_variable_definition_set_valid_range_double(variable_definition, -90.0, 90.0);
path = "/MDR[]/MDR/EARTH_LOCATION[]";
description = "the corner coordinates are rough estimates of the circle areas for the scan elements; the size of "
"a scan element (in a certain direction) is taken to be half the distance, from center to center, "
"from a scan element to its nearest neighboring scan element";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, description);
/* solar_azimuth_angle */
description = "solar azimuth angle at the surface";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "solar_azimuth_angle", harp_type_double, 1,
dimension_type, NULL, description, "degree", NULL,
read_solar_azimuth_angle);
harp_variable_definition_set_valid_range_double(variable_definition, 0.0, 360.0);
path = "/MDR[]/MDR/ANGULAR_RELATION[,2]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* solar_zenith_angle */
description = "solar zenith angle at the surface";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "solar_zenith_angle", harp_type_double,
1, dimension_type, NULL, description, "degree", NULL,
read_solar_zenith_angle);
harp_variable_definition_set_valid_range_double(variable_definition, 0.0, 180.0);
path = "/MDR[]/MDR/ANGULAR_RELATION[,0]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* sensor_azimuth_angle */
description = "sensor azimuth angle at the surface";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "sensor_azimuth_angle", harp_type_double, 1,
dimension_type, NULL, description, "degree", NULL,
read_sensor_azimuth_angle);
harp_variable_definition_set_valid_range_double(variable_definition, 0.0, 360.0);
path = "/MDR[]/MDR/ANGULAR_RELATION[,3]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* sensor_zenith_angle */
description = "sensor angle at the surface";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "sensor_zenith_angle", harp_type_double, 1,
dimension_type, NULL, description, "degree", NULL,
read_sensor_zenith_angle);
harp_variable_definition_set_valid_range_double(variable_definition, 0.0, 180.0);
path = "/MDR[]/MDR/ANGULAR_RELATION[,1]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* CH4_column_density */
description = "CH4 column mass density";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "CH4_column_density", harp_type_double, 1,
dimension_type, NULL, description, "kg/m^2", NULL, read_ch4_column);
path = "/MDR[]/MDR/INTEGRATED_CH4[]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* CO_column_density */
description = "CO column mass density";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "CO_column_density", harp_type_double, 1,
dimension_type, NULL, description, "kg/m^2", NULL, read_co_column);
path = "/MDR[]/MDR/INTEGRATED_CO[]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* CO2_column_density */
description = "CO2 column mass density";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "CO2_column_density", harp_type_double, 1,
dimension_type, NULL, description, "kg/m^2", NULL, read_co2_column);
path = "/MDR[]/MDR/INTEGRATED_CO2[]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* O3_column_density */
description = "O3 column mass density";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "O3_column_density", harp_type_double, 1,
dimension_type, NULL, description, "kg/m^2", NULL, read_o3_column);
path = "/MDR[]/MDR/INTEGRATED_OZONE[]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* N2O_column_density */
description = "N2O column mass density";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "N2O_column_density", harp_type_double, 1,
dimension_type, NULL, description, "kg/m^2", NULL, read_n2o_column);
path = "/MDR[]/MDR/INTEGRATED_N2O[]";
harp_variable_definition_add_mapping(variable_definition, NULL, NULL, path, NULL);
/* scan_subindex */
description = "the relative index (0-119) of this measurement within an MDR";
variable_definition =
harp_ingestion_register_variable_block_read(product_definition, "scan_subindex", harp_type_int8, 1,
dimension_type, NULL, description, NULL, NULL, read_scan_subindex);
return 0;
}
|