1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
|
/*
* Copyright (C) 2015-2018 S[&]T, The Netherlands.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "harp-internal.h"
#include <assert.h>
#include <stdlib.h>
#include <math.h>
/* Given arrays x[0..n-1] and y[0..n-1] containing a tabulated function, i.e., yi = f(xi), with
* x1 < x2 < ... < xN , and given values d0 and dnmin1 for the first derivative of the interpolating
* function at points 0 and n-1, respectively, this function returns an array second_derivatives[0..n-1] that contains
* the second derivatives of the interpolating function at the tabulated points xi . If d0 and/or
* dnmin1 are equal to 1.0e30 or larger, the function is signaled to set the corresponding boundary
* condition for a natural spline, with zero second derivative on that boundary.
*/
static int get_second_derivatives(const double *x, const double *y, long n, double d0, double dnmin1,
double *second_derivatives)
{
double *u = NULL;
double p;
double qnmin1;
double sig;
double unmin1;
long i;
long k;
if (second_derivatives == NULL)
{
harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "'second_derivatives' is empty");
return -1;
}
u = calloc((size_t)n, sizeof(double));
if (u == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
n * sizeof(double), __FILE__, __LINE__);
return -1;
}
if (d0 > 0.99e30)
{
/* The lower boundary condition is set either to be 'natural' ... */
second_derivatives[1] = 0.0;
u[1] = 0.0;
}
else
{
/* ... or else to have a specified first derivative. */
second_derivatives[1] = -0.5;
u[1] = (3.0 / (x[2] - x[1])) * ((y[2] - y[1]) / (x[2] - x[1]) - d0);
}
for (i = 1; i <= n - 2; i++)
{
/* This is the decomposition loop of the tridiagonal algorithm.
second_derivatives and u are used for temporary storage of the decomposed factors. */
sig = (x[i] - x[i - 1]) / (x[i + 1] - x[i - 1]);
p = sig * second_derivatives[i - 1] + 2.0;
second_derivatives[i] = (sig - 1.0) / p;
u[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]);
u[i] = (6.0 * u[i] / (x[i + 1] - x[i - 1]) - sig * u[i - 1]) / p;
}
if (dnmin1 > 0.99e30)
{
/* The upper boundary condition is set either to be 'natural' ... */
qnmin1 = 0.0;
unmin1 = 0.0;
}
else
{
/* ... or else to have a specified first derivative. */
qnmin1 = 0.5;
unmin1 = (3.0 / (x[n] - x[n - 1])) * (dnmin1 - (y[n] - y[n - 1]) / (x[n] - x[n - 1]));
}
second_derivatives[n - 1] = (unmin1 - qnmin1 * u[n - 2]) / (qnmin1 * second_derivatives[n - 2] + 1.0);
for (k = n - 2; k >= 0; k--)
{
/* This is the backsubstitution loop of the tridiagonal algorithm. */
second_derivatives[k] = second_derivatives[k] * second_derivatives[k + 1] + u[k];
}
free(u);
return 0;
}
/* Given an m by n tabulated function ya[1..m][1..n] , and tabulated independent variables
* x2a[1..n], this function constructs one-dimensional natural cubic splines of the rows of ya
* and returns the second-derivatives in the array y2a[0..m-1][0..n-1]. */
static int get_second_derivatives_matrix(const double *xx, const double **zz, long m, long n,
double **second_derivatives_matrix)
{
/* Set the first derivatives to 1.0e30 to obtain a natural spline */
double d0 = 1.0e30; /* First derivative of the interpolating function at points 0. */
double dnmin1 = 1.0e30; /* First derivative of the interpolating function at points n-1. */
long i;
for (i = 0; i <= m - 1; i++)
{
if (get_second_derivatives(xx, zz[i], n, d0, dnmin1, second_derivatives_matrix[i]) != 0)
{
return -1;
}
}
return 0;
}
/* Given the arrays xx[0..n-1] and yy[0..n-1], which tabulate a function (with the xai's in order),
* and given the array second_derivatives[0..n-1], which is the output from spline above, and given a value of xp,
* this function returns a cubic-spline interpolated value yp. */
static int execute_cubic_spline_interpolation(const double *xx, const double *yy, const double *second_derivatives,
long n, double xp, double *new_yp)
{
double yp;
long klo;
long khi;
long k;
double h;
double b;
double a;
/* We will find the right place in the table by means of
* bisection. This is optimal if sequential calls to this
* function are at random values of x. If sequential calls
* are in order, and closely spaced, one would do better
* to store previous values of klo and khi and test if
* they remain appropriate on the next call. */
klo = 0;
khi = n - 1;
while (khi - klo > 1)
{
k = (khi + klo) >> 1;
if (xx[k] > xp)
{
khi = k;
}
else
{
klo = k;
}
}
/* klo and khi now bracket the input value of xp. */
h = xx[khi] - xx[klo];
if (h == 0.0)
{
/* The xa’s must be distinct. */
harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "xx must be distinct (%s:%u)", __FILE__, __LINE__);
return -1;
}
a = (xx[khi] - xp) / h;
b = (xp - xx[klo]) / h;
/* Cubic spline polynomial is now evaluated. */
yp = a * yy[klo] + b * yy[khi] + ((a * a * a - a) * second_derivatives[klo] +
(b * b * b - b) * second_derivatives[khi]) * (h * h) / 6.0;
*new_yp = yp;
return 0;
}
/* Given x1a, x2a, ya, m, n as described in 'get_second_derivatives_matrix' and second_derivatives_matrix as produced by that function;
* and given a desired interpolating point x1,x2; this function returns an interpolated function value y
* by bicubic spline interpolation. */
static int execute_bicubic_spline_interpolation(const double *xx, const double *yy, const double **zz,
double **second_derivatives_matrix, long m, long n, double xp,
double yp, double *new_zp)
{
/* Set the first derivatives to 1.0e30 to obtain a natural spline */
double d0 = 1.0e30; /* First derivative of the interpolating function at points 0. */
double dnmin1 = 1.0e30; /* First derivative of the interpolating function at points n-1. */
double zp;
double *temp = NULL;
double *anothertemp = NULL;
long j;
temp = calloc((size_t)m, sizeof(double));
if (temp == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
m * sizeof(double), __FILE__, __LINE__);
return -1;
}
anothertemp = calloc((size_t)m, sizeof(double));
if (anothertemp == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
m * sizeof(double), __FILE__, __LINE__);
free(temp);
return -1;
}
/* Perform m evaluations of the row splines constructed by 'execute_cubic_spline_interpolation',
* using the 1-dimensional spline evaluator 'execute_cubic_spline_interpolation'. */
for (j = 0; j < m; j++)
{
if (execute_cubic_spline_interpolation(yy, zz[j], second_derivatives_matrix[j], n, yp, &anothertemp[j]) != 0)
{
free(anothertemp);
free(temp);
return -1;
}
}
if (get_second_derivatives(xx, anothertemp, m, d0, dnmin1, temp) != 0)
{
free(anothertemp);
free(temp);
return -1;
}
/* Construct the 1-dimensional column spline and evaluate it. */
if (execute_cubic_spline_interpolation(xx, anothertemp, temp, m, xp, &zp) != 0)
{
free(anothertemp);
free(temp);
return -1;
}
free(anothertemp);
free(temp);
*new_zp = zp;
return 0;
}
/* Given an array source_grid[0...n-1], with n=source_length, and given 'target_grid_point',
* returns 'index' such that target_grid_point is inside the interval [source_grid[index],source_grid[index+1]).
* source_grid[0...n-1] must be monotonic, either increasing or decreasing.
* If the grid is increasing then return:
* index = -1 if target_grid_point < source_grid[0]
* index = i if source_grid[i] <= target_grid_point < source_grid[i+1] (0 <= i < n)
* index = n-1 if target_grid_point == source_grid[n-1]
* index = n if target_grid_point > source_grid[n-1]
* If the grid is decreasing then return:
* index = -1 if target_grid_point > source_grid[0]
* index = i if source_grid[i] >= target_grid_point > source_grid[i+1] (0 <= i < n)
* index = n-1 if target_grid_point == source_grid[n-1]
* index = n if target_grid_point < source_grid[n-1]
* 'index' as input is taken as the initial guess for 'index' on output. */
void harp_interpolate_find_index(long source_length, const double *source_grid, double target_grid_point, long *index)
{
long low;
long high;
long increment;
int ascend;
if (target_grid_point == source_grid[source_length - 1])
{
*index = source_length - 1;
return;
}
/* True if ascending order of table, false otherwise. */
ascend = (source_grid[source_length - 1] >= source_grid[0]);
if (*index < 0 || *index > source_length - 1)
{
/* Input guess not useful. Go immediately to bisection */
low = -1;
high = source_length;
}
else
{
low = *index;
increment = 1;
if (target_grid_point == source_grid[low] || (target_grid_point > source_grid[low]) == ascend)
{
if (low == source_length - 1)
{
*index = source_length;
return;
}
high = low + 1;
while (target_grid_point == source_grid[high] || (target_grid_point > source_grid[high]) == ascend)
{
low = high;
high = low + increment;
if (high > source_length - 1)
{
high = source_length;
break;
}
increment += increment;
}
}
else
{
if (low == 0)
{
*index = -1;
return;
}
high = low;
low -= 1;
while (target_grid_point != source_grid[low] && (target_grid_point < source_grid[low]) == ascend)
{
high = low;
if (increment >= high)
{
low = -1;
break;
}
else
{
low = high - increment;
}
increment += increment;
}
}
}
/* final bisection */
while (high - low != 1)
{
long middle = (high + low) / 2;
if (target_grid_point == source_grid[middle] || (target_grid_point > source_grid[middle]) == ascend)
{
low = middle;
}
else
{
high = middle;
}
}
if (low == source_length - 1)
{
/* point is after source_grid[source_length - 1], because equality was already checked */
*index = source_length;
}
else
{
*index = low;
}
}
int harp_cubic_spline_interpolation(const double *xx, const double *yy, long n, const double xp, double *yp)
{
double d0 = 1.0e30; /* First derivative of the interpolating function at points 0. */
double dnmin1 = 1.0e30; /* First derivative of the interpolating function at points n-1. */
double *second_derivatives = NULL; /* Second derivatives */
/* Get the second derivatives of the interpolating function at the tabulated points */
second_derivatives = calloc((size_t)n, sizeof(double));
if (second_derivatives == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
n * sizeof(double), __FILE__, __LINE__);
return -1;
}
if (get_second_derivatives(xx, yy, n, d0, dnmin1, second_derivatives) != 0)
{
free(second_derivatives);
return -1;
}
/* Interpolate */
if (execute_cubic_spline_interpolation(xx, yy, second_derivatives, n, xp, yp) != 0)
{
free(second_derivatives);
return -1;
}
free(second_derivatives);
return 0;
}
/* Bicubic spline interpolation */
int harp_bicubic_spline_interpolation(const double *xx, const double *yy, const double **zz, long m, long n,
double xp, double yp, double *new_zp)
{
double **second_derivatives_matrix = NULL; /* Matrix with second derivatives */
double zp;
long i;
/* Get the second derivatives of the interpolating function at the tabulated points */
second_derivatives_matrix = calloc((size_t)m, sizeof(double *));
if (second_derivatives_matrix == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
m * sizeof(double *), __FILE__, __LINE__);
return -1;
}
for (i = 0; i < m; i++)
{
second_derivatives_matrix[i] = calloc((size_t)n, sizeof(double));
if (second_derivatives_matrix[i] == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
n * sizeof(double), __FILE__, __LINE__);
free(second_derivatives_matrix);
return -1;
}
}
if (get_second_derivatives_matrix(xx, zz, m, n, second_derivatives_matrix) != 0)
{
for (i = 0; i < m; i++)
{
free(second_derivatives_matrix[i]);
}
free(second_derivatives_matrix);
return -1;
}
/* Interpolate */
if (execute_bicubic_spline_interpolation(xx, yy, zz, second_derivatives_matrix, m, n, xp, yp, &zp) != 0)
{
for (i = 0; i < m; i++)
{
free(second_derivatives_matrix[i]);
}
free(second_derivatives_matrix);
return -1;
}
/* Done */
for (i = 0; i < m; i++)
{
free(second_derivatives_matrix[i]);
}
free(second_derivatives_matrix);
*new_zp = zp;
return 0;
}
static void interpolate_linear(long source_length, const double *source_grid, const double *source_array,
double target_grid_point, int out_of_bound_flag, long *pos, double *target_value)
{
double v;
assert(source_length > 1);
assert(out_of_bound_flag == 0 || out_of_bound_flag == 1 || out_of_bound_flag == 2);
harp_interpolate_find_index(source_length, source_grid, target_grid_point, pos);
if (*pos == -1)
{
/* grid point is before source_grid[0] */
if (out_of_bound_flag == 1)
{
*target_value = source_array[0];
}
else if (out_of_bound_flag == 2)
{
v = (target_grid_point - source_grid[0]) / (source_grid[0] - source_grid[1]);
*target_value = source_array[0] + v * (source_array[0] - source_array[1]);
}
else
{
*target_value = harp_nan();
}
}
else if (*pos == source_length)
{
/* grid point is after source_grid[source_length - 1] */
if (out_of_bound_flag == 1)
{
*target_value = source_array[source_length - 1];
}
else if (out_of_bound_flag == 2)
{
v = (target_grid_point - source_grid[source_length - 1]) /
(source_grid[source_length - 1] - source_grid[source_length - 2]);
*target_value = source_array[source_length - 1] +
v * (source_array[source_length - 1] - source_array[source_length - 2]);
}
else
{
*target_value = harp_nan();
}
}
else if (target_grid_point == source_grid[*pos])
{
/* don't interpolate, but take exact point */
*target_value = source_array[*pos];
}
else if (target_grid_point == source_grid[*pos + 1])
{
/* don't interpolate, but take exact point */
*target_value = source_array[*pos + 1];
}
else
{
/* grid point is between source_grid[pos] and source_grid[pos + 1] */
v = (target_grid_point - source_grid[*pos]) / (source_grid[(*pos) + 1] - source_grid[*pos]);
*target_value = (1 - v) * source_array[*pos] + v * source_array[(*pos) + 1];
}
}
/* Interpolate single value from source grid to target point using linear interpolation
* source_grid needs to be strict monotonic.
* out_of_bound_flag:
* 0: set value outside source_grid to NaN
* 1: set value outside source_grid to edge value (i.e. source_array[0] or source_array[source_length - 1])
* 2: extrapolate based on nearest two edge values
*/
void harp_interpolate_value_linear(long source_length, const double *source_grid, const double *source_array,
double target_grid_point, int out_of_bound_flag, double *target_value)
{
long pos = 0;
interpolate_linear(source_length, source_grid, source_array, target_grid_point, out_of_bound_flag, &pos,
target_value);
}
/* Interpolate array from source grid to target grid using linear interpolation
* Both source_grid and target_grid need to be strict monotonic.
* This function will do 'the right thing' depending on whether a grid is increasing or decreasing.
* out_of_bound_flag:
* 0: set values outside source_grid to NaN
* 1: set values outside source_grid to edge value (i.e. source_array[0] or source_array[source_length - 1])
* 2: extrapolate based on nearest two edge values
*/
void harp_interpolate_array_linear(long source_length, const double *source_grid, const double *source_array,
long target_length, const double *target_grid, int out_of_bound_flag,
double *target_array)
{
long pos = 0;
long i;
for (i = 0; i < target_length; i++)
{
interpolate_linear(source_length, source_grid, source_array, target_grid[i], out_of_bound_flag, &pos,
&target_array[i]);
}
}
static void interpolate_loglinear(long source_length, const double *source_grid, const double *source_array,
double target_grid_point, int out_of_bound_flag, long *pos, double *target_value)
{
double v;
assert(source_length > 1);
assert(out_of_bound_flag == 0 || out_of_bound_flag == 1 || out_of_bound_flag == 2);
harp_interpolate_find_index(source_length, source_grid, target_grid_point, pos);
if (*pos == -1)
{
/* grid point is before source_grid[0] */
if (out_of_bound_flag == 1)
{
*target_value = source_array[0];
}
else if (out_of_bound_flag == 2)
{
v = (log(target_grid_point / source_grid[0])) / (log(source_grid[0] / source_grid[1]));
*target_value = source_array[0] + v * (source_array[0] - source_array[1]);
}
else
{
*target_value = harp_nan();
}
}
else if (*pos == source_length)
{
/* grid point is after source_grid[source_length - 1] */
if (out_of_bound_flag == 1)
{
*target_value = source_array[source_length - 1];
}
else if (out_of_bound_flag == 2)
{
v = (log(target_grid_point / source_grid[source_length - 1])) /
(log(source_grid[source_length - 1] / source_grid[source_length - 2]));
*target_value = source_array[source_length - 1] +
v * (source_array[source_length - 1] - source_array[source_length - 2]);
}
else
{
*target_value = harp_nan();
}
}
else if (target_grid_point == source_grid[*pos])
{
/* don't interpolate, but take exact point */
*target_value = source_array[*pos];
}
else if (target_grid_point == source_grid[*pos + 1])
{
/* don't interpolate, but take exact point */
*target_value = source_array[*pos + 1];
}
else
{
/* grid point is between source_grid[pos] and source_grid[pos + 1] */
v = (log(target_grid_point / source_grid[*pos])) / (log(source_grid[(*pos) + 1] / source_grid[*pos]));
*target_value = (1 - v) * source_array[*pos] + v * source_array[(*pos) + 1];
}
}
/* Interpolate single value from source grid to target point using log linear interpolation of the axis.
* A log linear interpolation is a linear interpolation using log(source_grid) and log(target_grid_point).
* source_grid needs to be strict monotonic with values > 0. target_grid_point needs to be > 0.
* out_of_bound_flag:
* 0: set value outside source_grid to NaN
* 1: set value outside source_grid to edge value (i.e. source_array[0] or source_array[source_length - 1])
* 2: extrapolate based on nearest two edge values
*/
void harp_interpolate_value_loglinear(long source_length, const double *source_grid, const double *source_array,
double target_grid_point, int out_of_bound_flag, double *target_value)
{
long pos = 0;
interpolate_loglinear(source_length, source_grid, source_array, target_grid_point, out_of_bound_flag, &pos,
target_value);
}
/* Interpolate array from source grid to target grid using log linear interpolation of the axis.
* A log linear interpolation is a linear interpolation using log(source_grid) and log(target_grid).
* Both source_grid and target_grid need to be strict monotonic with values > 0.
* This function will do 'the right thing' depending on whether a grid is increasing or decreasing.
* out_of_bound_flag:
* 0: set values outside source_grid to NaN
* 1: set values outside source_grid to edge value (i.e. source_array[0] or source_array[source_length - 1])
* 2: extrapolate based on nearest two edge values
*/
void harp_interpolate_array_loglinear(long source_length, const double *source_grid, const double *source_array,
long target_length, const double *target_grid, int out_of_bound_flag,
double *target_array)
{
long pos = 0;
long i;
for (i = 0; i < target_length; i++)
{
interpolate_loglinear(source_length, source_grid, source_array, target_grid[i], out_of_bound_flag, &pos,
&target_array[i]);
}
}
static void interpolate_logloglinear(long source_length, const double *source_grid, const double *source_array,
double target_grid_point, int out_of_bound_flag, long *pos, double *target_value)
{
double v;
assert(source_length > 1);
assert(out_of_bound_flag == 0 || out_of_bound_flag == 1 || out_of_bound_flag == 2);
harp_interpolate_find_index(source_length, source_grid, target_grid_point, pos);
if (*pos == -1)
{
/* grid point is before source_grid[0] */
if (out_of_bound_flag == 1)
{
*target_value = source_array[0];
}
else if (out_of_bound_flag == 2)
{
v = log(target_grid_point / source_grid[0]) / log(source_grid[0] / source_grid[1]);
*target_value = exp((1 + v) * log(source_array[0]) - v * log(source_array[1]));
}
else
{
*target_value = harp_nan();
}
}
else if (*pos == source_length)
{
/* grid point is after source_grid[source_length - 1] */
if (out_of_bound_flag == 1)
{
*target_value = source_array[source_length - 1];
}
else if (out_of_bound_flag == 2)
{
v = log(target_grid_point / source_grid[source_length - 1]) /
log(source_grid[source_length - 1] / source_grid[source_length - 2]);
*target_value = exp((1 + v) * log(source_array[source_length - 1]) -
v * log(source_array[source_length - 2]));
}
else
{
*target_value = harp_nan();
}
}
else if (target_grid_point == source_grid[*pos])
{
/* don't interpolate, but take exact point */
*target_value = source_array[*pos];
}
else if (target_grid_point == source_grid[*pos + 1])
{
/* don't interpolate, but take exact point */
*target_value = source_array[*pos + 1];
}
else
{
/* grid point is between source_grid[pos] and source_grid[pos + 1] */
v = log(target_grid_point / source_grid[*pos]) / log(source_grid[(*pos) + 1] / source_grid[*pos]);
*target_value = exp((1 - v) * log(source_array[*pos]) + v * log(source_array[(*pos) + 1]));
}
}
/* Interpolate single value from source grid to target point using log/log linear interpolation of the axis.
* A log/log linear interpolation is a linear interpolation using log(source_grid), log(target_grid_point) and
* log(source_array).
* source_grid needs to be strict monotonic with values > 0. source_array and target_grid_point need to be > 0.
* out_of_bound_flag:
* 0: set value outside source_grid to NaN
* 1: set value outside source_grid to edge value (i.e. source_array[0] or source_array[source_length - 1])
* 2: extrapolate based on nearest two edge values
*/
void harp_interpolate_value_logloglinear(long source_length, const double *source_grid, const double *source_array,
double target_grid_point, int out_of_bound_flag, double *target_value)
{
long pos = 0;
interpolate_logloglinear(source_length, source_grid, source_array, target_grid_point, out_of_bound_flag, &pos,
target_value);
}
/* Interpolate single value from source grid to target point using log/log linear interpolation of the axis.
* A log/log linear interpolation is a linear interpolation on the arrays log(source_grid), log(target_grid) and
* log(source_array).
* Both source_grid and target_grid need to be strict monotonic with values > 0. source_array needs to be > 0.
* This function will do 'the right thing' depending on whether a grid is increasing or decreasing.
* out_of_bound_flag:
* 0: set values outside source_grid to NaN
* 1: set values outside source_grid to edge value (i.e. source_array[0] or source_array[source_length - 1])
* 2: extrapolate based on nearest two edge values
*/
void harp_interpolate_array_logloglinear(long source_length, const double *source_grid, const double *source_array,
long target_length, const double *target_grid, int out_of_bound_flag,
double *target_array)
{
long pos = 0;
long i;
for (i = 0; i < target_length; i++)
{
interpolate_logloglinear(source_length, source_grid, source_array, target_grid[i], out_of_bound_flag, &pos,
&target_array[i]);
}
}
/* Interpolate array from source grid to target grid using linear interpolation
* Both source_grid_boundaries and target_grid_boundaries need to be strict monotonic.
*/
void harp_interval_interpolate_array_linear(long source_length, const double *source_grid_boundaries,
const double *source_array, long target_length,
const double *target_grid_boundaries, double *target_array)
{
long i, j;
for (i = 0; i < target_length; i++)
{
long num_valid_contributions = 0;
double sum = 0.0;
double xminb, xmaxb;
if (target_grid_boundaries[2 * i] < target_grid_boundaries[2 * i + 1])
{
xminb = target_grid_boundaries[2 * i];
xmaxb = target_grid_boundaries[2 * i + 1];
}
else
{
xminb = target_grid_boundaries[2 * i + 1];
xmaxb = target_grid_boundaries[2 * i];
}
for (j = 0; j < source_length; j++)
{
double xmina, xmaxa;
if (source_grid_boundaries[2 * j] < source_grid_boundaries[2 * j + 1])
{
xmina = source_grid_boundaries[2 * j];
xmaxa = source_grid_boundaries[2 * j + 1];
}
else
{
xmina = source_grid_boundaries[2 * j + 1];
xmaxa = source_grid_boundaries[2 * j];
}
if (!(xmina >= xmaxb || xminb >= xmaxa || harp_isnan(source_array[j])))
{
double xminc, xmaxc, weight;
/* there is overlap, interval A is not empty, and interval A has a valid value */
/* calculate intersection interval C of intervals A and B */
xminc = xmina < xminb ? xminb : xmina;
xmaxc = xmaxa > xmaxb ? xmaxb : xmaxa;
weight = (xmaxc - xminc) / (xmaxa - xmina);
sum += weight * source_array[j];
num_valid_contributions++;
}
}
if (num_valid_contributions != 0)
{
target_array[i] = sum;
}
else
{
target_array[i] = harp_nan();
}
}
}
/* Determine boundary intervals based on linear inter-/extrapolation of mid points.
* The bounds array will be treated as a [num_midpoints,2] array and should thus be allocated
* to hold '2 * num_midpoints' values.
* If num_midpoints equals 1, the two bounds values will be set equal to the midpoint value.
* If extrapolate is 1 then the values of the first bound of the first midpoint (bound[0]) and the last bound of the
* last midpoint (bound[2 * num_midpoints - 1]) will be set based on extrapolation of the nearest two midpoint values.
* If extrapolate is 0 then the midpoint values will be used (i.e. bound[0] = midpoint[0] and
* bound[2*num_midpoints-1] = midpoint[num_midpoints-1])
*/
void harp_bounds_from_midpoints_linear(long num_midpoints, const double *midpoints, int extrapolate, double *bounds)
{
long i;
if (num_midpoints < 1)
{
return;
}
if (num_midpoints == 1)
{
bounds[0] = midpoints[0];
bounds[1] = midpoints[0];
return;
}
for (i = 0; i < num_midpoints - 1; i++)
{
double average = 0.5 * (midpoints[i] + midpoints[i + 1]);
bounds[2 * i + 1] = average;
bounds[2 * (i + 1)] = average;
}
if (extrapolate)
{
bounds[0] = 0.5 * (3.0 * midpoints[0] - midpoints[1]);
bounds[2 * (num_midpoints - 1) + 1] = 0.5 * (3.0 * midpoints[num_midpoints - 1] - midpoints[num_midpoints - 2]);
}
else
{
bounds[0] = midpoints[0];
bounds[2 * (num_midpoints - 1) + 1] = midpoints[num_midpoints - 1];
}
}
/* Determine boundary intervals based on loglinear inter-/extrapolation of mid points.
* The bounds array will be treated as a [num_midpoints,2] array and should thus be allocated
* to hold '2 * num_midpoints' values.
* If num_midpoints equals 1, the two bounds values will be set equal to the midpoint value.
* If extrapolate is 1 then the values of the first bound of the first midpoint (bound[0]) and the last bound of the
* last midpoint (bound[2 * num_midpoints - 1]) will be set based on extrapolation of the nearest two midpoint values.
* If extrapolate is 0 then the midpoint values will be used (i.e. bound[0] = midpoint[0] and
* bound[2*num_midpoints-1] = midpoint[num_midpoints-1])
*/
void harp_bounds_from_midpoints_loglinear(long num_midpoints, const double *midpoints, int extrapolate, double *bounds)
{
long i;
if (num_midpoints < 1)
{
return;
}
if (num_midpoints == 1)
{
bounds[0] = midpoints[0];
bounds[1] = midpoints[0];
return;
}
for (i = 0; i < num_midpoints - 1; i++)
{
double average = exp(0.5 * (log(midpoints[i]) + log(midpoints[i + 1])));
bounds[2 * i + 1] = average;
bounds[2 * (i + 1)] = average;
}
if (extrapolate)
{
bounds[0] = exp(0.5 * (3.0 * log(midpoints[0]) - log(midpoints[1])));
bounds[2 * (num_midpoints - 1) + 1] =
exp(0.5 * (3.0 * log(midpoints[num_midpoints - 1]) - log(midpoints[num_midpoints - 2])));
}
else
{
bounds[0] = midpoints[0];
bounds[2 * (num_midpoints - 1) + 1] = midpoints[num_midpoints - 1];
}
}
|