1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
|
/*
* Copyright (C) 2015-2018 S[&]T, The Netherlands.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "harp-internal.h"
#include "ipow.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <assert.h>
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
int harp_is_identifier(const char *name)
{
int i;
if (name == NULL)
{
return 0;
}
if (!isalpha(*name))
{
return 0;
}
i = 1;
while (name[i] != '\0')
{
if (!(isalnum(name[i]) || name[i] == '_'))
{
return 0;
}
i++;
}
return 1;
}
static void clean_path(char *path)
{
int from;
int to;
if (path == NULL || path[0] == '\0')
{
return;
}
from = 0;
to = 0;
while (path[from] == '.' && path[from + 1] == '/')
{
from += 2;
}
while (path[from] != '\0')
{
if (path[from] == '/' || path[from] == '\\')
{
if (path[from + 1] == '/' || path[from + 1] == '\\')
{
from++;
continue;
}
if (path[from + 1] == '.')
{
if (path[from + 2] == '\0' || path[from + 2] == '/' || path[from + 2] == '\\')
{
from += 2;
continue;
}
if (path[from + 2] == '.' &&
(path[from + 3] == '\0' || path[from + 3] == '/' || path[from + 3] == '\\'))
{
if (!(to >= 2 && path[to - 1] == '.' && path[to - 2] == '.' &&
(to == 2 || path[to - 3] == '/' || path[to - 3] == '\\')))
{
int prev = to - 1;
/* find previous / or \ */
while (prev >= 0 && path[prev] != '/' && path[prev] != '\\')
{
prev--;
}
if (prev >= 0)
{
to = prev;
from += 3;
continue;
}
}
}
}
}
path[to] = path[from];
from++;
to++;
}
/* an empty path is a relative path to the current directory -> use '.' */
if (to == 0)
{
path[to] = '.';
to++;
}
path[to] = '\0';
}
int harp_path_find_file(const char *searchpath, const char *filename, char **location)
{
#ifdef WIN32
const char path_separator_char = ';';
#else
const char path_separator_char = ':';
#endif
char *path;
char *path_component;
char *filepath = NULL;
int filepath_length = 0;
int filename_length = (int)strlen(filename);
if (searchpath == NULL || searchpath[0] == '\0')
{
*location = NULL;
return 0;
}
path = strdup(searchpath);
if (path == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not duplicate string) (%s:%u)", __FILE__,
__LINE__);
return -1;
}
path_component = path;
while (*path_component != '\0')
{
struct stat sb;
char *p;
int path_component_length;
p = path_component;
while (*p != '\0' && *p != path_separator_char)
{
p++;
}
if (*p != '\0')
{
*p = '\0';
p++;
}
path_component_length = (int)strlen(path_component);
if (filepath_length < path_component_length + filename_length + 1)
{
char *new_filepath;
new_filepath = realloc(filepath, path_component_length + filename_length + 2);
if (new_filepath == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not duplicate string) (%s:%u)", __FILE__,
__LINE__);
if (filepath != NULL)
{
free(filepath);
}
return -1;
}
filepath = new_filepath;
filepath_length = path_component_length + filename_length + 1;
}
sprintf(filepath, "%s/%s", path_component, filename);
if (stat(filepath, &sb) == 0)
{
if (sb.st_mode & S_IFREG)
{
/* we found the file */
*location = filepath;
free(path);
return 0;
}
}
path_component = p;
}
if (filepath != NULL)
{
free(filepath);
}
free(path);
/* the file was not found */
*location = NULL;
return 0;
}
int harp_path_from_path(const char *initialpath, int is_filepath, const char *appendpath, char **resultpath)
{
char *path;
int initialpath_length;
int appendpath_length;
initialpath_length = (int)strlen(initialpath);
appendpath_length = (appendpath == NULL ? 0 : (int)strlen(appendpath));
if (is_filepath && initialpath_length > 0)
{
/* remove trailing parth */
while (initialpath_length > 0 && initialpath[initialpath_length - 1] != '/' &&
initialpath[initialpath_length - 1] != '\\')
{
initialpath_length--;
}
}
*resultpath = malloc(initialpath_length + 1 + appendpath_length + 1);
if (*resultpath == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not duplicate string) (%s:%u)", __FILE__,
__LINE__);
return -1;
}
path = *resultpath;
if (initialpath_length > 0)
{
memcpy(path, initialpath, initialpath_length);
path += initialpath_length;
if (appendpath_length > 0)
{
*path = '/';
path++;
}
}
if (appendpath_length > 0)
{
memcpy(path, appendpath, appendpath_length);
path += appendpath_length;
}
*path = '\0';
clean_path(*resultpath);
return 0;
}
int harp_path_for_program(const char *argv0, char **location)
{
const char *p;
int is_path = 0;
/* default (i.e. not found) is NULL */
*location = NULL;
if (argv0 == NULL)
{
return 0;
}
p = argv0;
while (*p != '\0')
{
if (*p == '/' || *p == '\\')
{
is_path = 1;
break;
}
p++;
}
if (is_path)
{
*location = strdup(argv0);
if (*location == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not duplicate string) (%s:%u)", __FILE__,
__LINE__);
return -1;
}
}
else
{
/* use PATH */
#ifdef WIN32
int argv0_length = (int)strlen(argv0);
if (argv0_length <= 4 || strcmp(&argv0[argv0_length - 4], ".exe") != 0)
{
char *filepath;
filepath = malloc(argv0_length + 5);
if (filepath == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not duplicate string) (%s:%u)", __FILE__,
__LINE__);
return -1;
}
strcpy(filepath, argv0);
strcpy(&filepath[argv0_length], ".exe");
if (harp_path_find_file(".", filepath, location) != 0)
{
free(filepath);
return -1;
}
if (*location == NULL && getenv("PATH") != NULL)
{
if (harp_path_find_file(getenv("PATH"), filepath, location) != 0)
{
free(filepath);
return -1;
}
}
free(filepath);
}
else
{
if (harp_path_find_file(".", argv0, location) != 0)
{
return -1;
}
if (*location == NULL && getenv("PATH") != NULL)
{
if (harp_path_find_file(getenv("PATH"), argv0, location) != 0)
{
return -1;
}
}
}
#else
if (getenv("PATH") != NULL)
{
if (harp_path_find_file(getenv("PATH"), argv0, location) != 0)
{
return -1;
}
}
else
{
*location = NULL;
}
#endif
}
if (*location != NULL && (*location)[0] != '/' && (*location)[0] != '\\' &&
!(isalpha((*location)[0]) && (*location)[1] == ':'))
{
char cwd[HARP_MAX_PATH_LENGTH + 1];
char *relative_location;
/* change relative path into absolute path */
if (getcwd(cwd, HARP_MAX_PATH_LENGTH) == NULL)
{
/* there is a problem with the current working directory -> return 'not found' */
return 0;
}
cwd[HARP_MAX_PATH_LENGTH] = '\0';
relative_location = *location;
if (harp_path_from_path(cwd, 0, relative_location, location) != 0)
{
free(relative_location);
return -1;
}
free(relative_location);
}
return 0;
}
/** \addtogroup harp_general
* @{
*/
/** Remove everything but the last pathname component from \a path.
* \param path Path to compute the basename of.
* \return Pointer to the last pathname component of \a path, i.e. everything from the end of \a path up to the first
* pathname component separation character ('\\' or '/' on Windows, '/' otherwise).
*/
LIBHARP_API const char *harp_basename(const char *path)
{
if (path == NULL)
{
return NULL;
}
else
{
const char *separator = NULL;
#ifdef WIN32
const char *cursor = path;
while (*cursor != '\0')
{
if (*cursor == '\\' || *cursor == '/')
{
separator = cursor;
}
cursor++;
}
#else
separator = strrchr(path, '/');
#endif
return (separator == NULL ? path : separator + 1);
}
}
/** Returns the name of a data type.
* \param data_type HARP basic data type
* \return if the data type is known a string containing the name of the type, otherwise the string "unknown".
*/
LIBHARP_API const char *harp_get_data_type_name(harp_data_type data_type)
{
switch (data_type)
{
case harp_type_int8:
return "int8";
case harp_type_int16:
return "int16";
case harp_type_int32:
return "int32";
case harp_type_float:
return "float";
case harp_type_double:
return "double";
case harp_type_string:
return "string";
default:
assert(0);
exit(1);
}
}
/** Retrieve the byte size for a HARP data type.
* \param data_type Data type for which to retrieve the size.
* \return The size of the data type in bytes.
*/
LIBHARP_API long harp_get_size_for_type(harp_data_type data_type)
{
switch (data_type)
{
case harp_type_int8:
return (long)sizeof(int8_t);
case harp_type_int16:
return (long)sizeof(int16_t);
case harp_type_int32:
return (long)sizeof(int32_t);
case harp_type_float:
return (long)sizeof(float);
case harp_type_double:
return (long)sizeof(double);
case harp_type_string:
return (long)sizeof(char *);
default:
assert(0);
exit(1);
}
}
/** Retrieve the fill value for a HARP data type.
* \param data_type Data type for which to retrieve the fill value.
* \return The fill value for the data type.
*/
LIBHARP_API harp_scalar harp_get_fill_value_for_type(harp_data_type data_type)
{
harp_scalar fill_value;
switch (data_type)
{
case harp_type_int8:
fill_value.int8_data = 0;
break;
case harp_type_int16:
fill_value.int16_data = 0;
break;
case harp_type_int32:
fill_value.int32_data = 0;
break;
case harp_type_float:
fill_value.float_data = (float)harp_nan();
break;
case harp_type_double:
fill_value.double_data = harp_nan();
break;
default:
assert(0);
exit(1);
}
return fill_value;
}
/** Retrieve the minimum valid value for a HARP data type.
* \param data_type Data type for which to retrieve the minimum valid value.
* \return The minimum valid value of the data type.
*/
LIBHARP_API harp_scalar harp_get_valid_min_for_type(harp_data_type data_type)
{
harp_scalar valid_min;
switch (data_type)
{
case harp_type_int8:
valid_min.int8_data = -128;
break;
case harp_type_int16:
valid_min.int16_data = -32768;
break;
case harp_type_int32:
valid_min.int32_data = -2147483647 - 1;
break;
case harp_type_float:
valid_min.float_data = (float)harp_mininf();
break;
case harp_type_double:
valid_min.double_data = harp_mininf();
break;
default:
assert(0);
exit(1);
}
return valid_min;
}
/** Retrieve the maximum valid value for a HARP data type.
* \param data_type Data type for which to retrieve the maximum valid value.
* \return The maximum valid value of the data type.
*/
LIBHARP_API harp_scalar harp_get_valid_max_for_type(harp_data_type data_type)
{
harp_scalar valid_max;
switch (data_type)
{
case harp_type_int8:
valid_max.int8_data = 127;
break;
case harp_type_int16:
valid_max.int16_data = 32767;
break;
case harp_type_int32:
valid_max.int32_data = 2147483647;
break;
case harp_type_float:
valid_max.float_data = (float)harp_plusinf();
break;
case harp_type_double:
valid_max.double_data = harp_plusinf();
break;
default:
assert(0);
exit(1);
}
return valid_max;
}
/** Test if \a value equals the fill value for the specified data type.
* \param data_type Data type corresponding to the value of \a value.
* \param value Value to test.
* \return
* \arg \c 0, Value is not equal to the fill value.
* \arg \c 1, Value equals the fill value.
*/
LIBHARP_API int harp_is_fill_value_for_type(harp_data_type data_type, harp_scalar value)
{
switch (data_type)
{
case harp_type_int8:
return value.int8_data == 0;
case harp_type_int16:
return value.int16_data == 0;
case harp_type_int32:
return value.int32_data == 0;
case harp_type_float:
return harp_isnan(value.float_data);
case harp_type_double:
return harp_isnan(value.double_data);
default:
assert(0);
exit(1);
}
}
/** Test if \a value equals the minimum valid value for the specified data type.
* \param data_type Data type corresponding to the value of \a value.
* \param value Value to test.
* \return
* \arg \c 0, Value is not equal to the minimum valid value.
* \arg \c 1, Value equals the minimum valid value.
*/
LIBHARP_API int harp_is_valid_min_for_type(harp_data_type data_type, harp_scalar value)
{
switch (data_type)
{
case harp_type_int8:
return value.int8_data == -128;
case harp_type_int16:
return value.int16_data == -32768;
case harp_type_int32:
return value.int32_data == -2147483647 - 1;
case harp_type_float:
return harp_ismininf(value.float_data);
case harp_type_double:
return harp_ismininf(value.double_data);
default:
assert(0);
exit(1);
}
}
/** Test if \a value equals the maximum valid value for the specified data type.
* \param data_type Data type corresponding to the value of \a value.
* \param value Value to test.
* \return
* \arg \c 0, Value is not equal to the maximum valid value.
* \arg \c 1, Value equals the maximum valid value.
*/
LIBHARP_API int harp_is_valid_max_for_type(harp_data_type data_type, harp_scalar value)
{
switch (data_type)
{
case harp_type_int8:
return value.int8_data == 127;
case harp_type_int16:
return value.int16_data == 32767;
case harp_type_int32:
return value.int32_data == 2147483647;
case harp_type_float:
return harp_isplusinf(value.float_data);
case harp_type_double:
return harp_isplusinf(value.double_data);
default:
assert(0);
exit(1);
}
}
/** Find out whether a double value is a finite number (i.e. not NaN and not infinite).
* \param x A double value.
* \return
* \arg \c 1, The double value is a finite number.
* \arg \c 0, The double value is not a finite number.
*/
LIBHARP_API int harp_isfinite(double x)
{
return (!harp_isnan(x) && !harp_isinf(x));
}
/** Find out whether a double value equals NaN (Not a Number).
* \param x A double value.
* \return
* \arg \c 1, The double value equals NaN.
* \arg \c 0, The double value does not equal NaN.
*/
LIBHARP_API int harp_isnan(double x)
{
uint64_t e_mask, f_mask;
union
{
uint64_t as_int;
double as_double;
} mkNaN;
mkNaN.as_double = x;
e_mask = 0x7ff0;
e_mask <<= 48;
if ((mkNaN.as_int & e_mask) != e_mask)
return 0; /* e != 2047 */
f_mask = 1;
f_mask <<= 52;
f_mask--;
/* number is NaN if f does not equal zero. */
return (mkNaN.as_int & f_mask) != 0;
}
/** Retrieve a double value that respresents NaN (Not a Number).
* \return The double value 'NaN'.
*/
LIBHARP_API double harp_nan(void)
{
union
{
uint64_t as_int;
double as_double;
} mkNaN;
mkNaN.as_int = 0x7ff8;
mkNaN.as_int <<= 48;
return mkNaN.as_double;
}
/** Find out whether a double value equals inf (either positive or negative infinity).
* \param x A double value.
* \return
* \arg \c 1, The double value equals inf.
* \arg \c 0, The double value does not equal inf.
*/
LIBHARP_API int harp_isinf(double x)
{
return harp_isplusinf(x) || harp_ismininf(x);
}
/** Find out whether a double value equals +inf (positive infinity).
* \param x A double value.
* \return
* \arg \c 1, The double value equals +inf.
* \arg \c 0, The double value does not equal +inf.
*/
LIBHARP_API int harp_isplusinf(double x)
{
uint64_t plusinf;
union
{
uint64_t as_int;
double as_double;
} mkInf;
mkInf.as_double = x;
plusinf = 0x7ff0;
plusinf <<= 48;
return mkInf.as_int == plusinf;
}
/** Find out whether a double value equals -inf (negative infinity).
* \param x A double value.
* \return
* \arg \c 1, The double value equals -inf.
* \arg \c 0, The double value does not equal -inf.
*/
LIBHARP_API int harp_ismininf(double x)
{
uint64_t mininf;
union
{
uint64_t as_int;
double as_double;
} mkInf;
mkInf.as_double = x;
mininf = 0xfff0;
mininf <<= 48;
return mkInf.as_int == mininf;
}
/** Retrieve a double value that respresents +inf (positive infinity).
* \return The double value '+inf'.
*/
LIBHARP_API double harp_plusinf(void)
{
union
{
uint64_t as_int;
double as_double;
} mkInf;
mkInf.as_int = 0x7ff0;
mkInf.as_int <<= 48;
return mkInf.as_double;
}
/** Retrieve a double value that respresents -inf (negative infinity).
* \return The double value '-inf'.
*/
LIBHARP_API double harp_mininf(void)
{
union
{
uint64_t as_int;
double as_double;
} mkInf;
mkInf.as_int = 0xfff0;
mkInf.as_int <<= 48;
return mkInf.as_double;
}
/** Write 64 bit signed integer to a string.
* The string \a s will be 0 terminated.
* \param a A signed 64 bit integer value.
* \param s A character buffer that is at least 21 bytes long.
*/
LIBHARP_API void harp_str64(int64_t a, char *s)
{
if (a < 0)
{
s[0] = '-';
harp_str64u((uint64_t)(-a), &s[1]);
}
else
{
harp_str64u((uint64_t)a, s);
}
}
/** Write 64 bit unsigned integer to a string.
* The string \a s will be 0 terminated.
* \param a An unsigned 64 bit integer value.
* \param s A character buffer that is at least 21 bytes long.
*/
LIBHARP_API void harp_str64u(uint64_t a, char *s)
{
if (a <= 4294967295UL)
{
sprintf(s, "%ld", (long)a);
}
else
{
long a1, a2;
a1 = (long)(a % 100000000);
a /= 100000000;
a2 = (long)(a % 100000000);
a /= 100000000;
if (a != 0)
{
sprintf(s, "%ld%08ld%08ld", (long)a, a2, a1);
}
else
{
sprintf(s, "%ld%08ld", a2, a1);
}
}
}
/**
* @}
*/
long harp_parse_double(const char *buffer, long buffer_length, double *dst, int ignore_trailing_bytes)
{
long length;
int value_length;
int exponent_length;
int has_sign;
double value;
long exponent;
int negative = 0;
length = buffer_length;
while (length > 0 && *buffer == ' ')
{
buffer++;
length--;
}
has_sign = 0;
if (length > 0)
{
if (*buffer == '+' || *buffer == '-')
{
negative = (*buffer == '-');
has_sign = 1;
buffer++;
length--;
}
}
/* check for NaN/Inf */
if (length >= 3)
{
if ((buffer[0] == 'N' || buffer[0] == 'n') && (buffer[1] == 'A' || buffer[1] == 'a') &&
(buffer[2] == 'N' || buffer[2] == 'n') && !has_sign)
{
length -= 3;
if (!ignore_trailing_bytes && length != 0)
{
harp_set_error(HARP_ERROR_INVALID_FORMAT, "invalid format for ascii floating point value");
return -1;
}
*dst = harp_nan();
return buffer_length - length;
}
else if ((buffer[0] == 'I' || buffer[0] == 'i') && (buffer[1] == 'N' || buffer[1] == 'n') &&
(buffer[2] == 'F' || buffer[2] == 'f'))
{
length -= 3;
if (!ignore_trailing_bytes && length != 0)
{
harp_set_error(HARP_ERROR_INVALID_FORMAT, "invalid format for ascii floating point value");
return -1;
}
*dst = negative ? harp_mininf() : harp_plusinf();
return buffer_length - length;
}
}
value = 0;
exponent = 0;
value_length = 0;
/* read mantissa part before the digit */
while (length > 0)
{
if (*buffer < '0' || *buffer > '9')
{
break;
}
value = 10 * value + (*buffer - '0');
value_length++;
buffer++;
length--;
}
/* read digit and mantissa part after the digit */
if (length > 0)
{
if (*buffer == '.')
{
buffer++;
length--;
while (length > 0)
{
if (*buffer < '0' || *buffer > '9')
{
break;
}
value = 10 * value + (*buffer - '0');
exponent--;
value_length++;
buffer++;
length--;
}
}
}
if (value_length == 0)
{
harp_set_error(HARP_ERROR_INVALID_FORMAT, "invalid format for ascii floating point value (no digits)");
return -1;
}
if (negative)
{
value = -value;
}
/* read exponent part */
if (length > 0 && (*buffer == 'd' || *buffer == 'D' || *buffer == 'e' || *buffer == 'E'))
{
long exponent_value;
buffer++;
length--;
negative = 0;
if (length > 0)
{
if (*buffer == '+' || *buffer == '-')
{
negative = (*buffer == '-');
buffer++;
length--;
}
}
exponent_value = 0;
exponent_length = 0;
while (length > 0)
{
if (*buffer < '0' || *buffer > '9')
{
break;
}
exponent_value = 10 * exponent_value + (*buffer - '0');
exponent_length++;
buffer++;
length--;
}
if (exponent_length == 0)
{
harp_set_error(HARP_ERROR_INVALID_FORMAT,
"invalid format for ascii floating point value (empty exponent value)");
return -1;
}
if (negative)
{
exponent_value = -exponent_value;
}
exponent += exponent_value;
}
if (!ignore_trailing_bytes && length != 0)
{
while (length > 0 && *buffer == ' ')
{
buffer++;
length--;
}
if (length != 0)
{
harp_set_error(HARP_ERROR_INVALID_FORMAT, "invalid format for ascii floating point value");
return -1;
}
}
if (exponent != 0)
{
value *= ipow(10, exponent);
}
*dst = value;
return buffer_length - length;
}
/** Compute the number of elements from a list of dimension lengths.
* \param num_dimensions Number of dimensions.
* \param dimension Dimension lengths.
* \return Number of elements (i.e. the product of the specified dimension lengths, or \c 1 if \a num_dimensions equals
* \c 0).
*/
long harp_get_num_elements(int num_dimensions, const long *dimension)
{
long num_elements;
int i;
num_elements = 1;
for (i = 0; i < num_dimensions; i++)
{
num_elements *= dimension[i];
}
return num_elements;
}
/**
* Return the length of the longest string.
* \param num_strings Number of strings in the array.
* \param string_data Array of strings to operate on.
* \return Length of the longest string.
*/
long harp_get_max_string_length(long num_strings, char **string_data)
{
long max_length = 0;
long i;
for (i = 0; i < num_strings; i++)
{
if (string_data[i] != NULL)
{
long length = (long)strlen(string_data[i]);
if (length > max_length)
{
max_length = length;
}
}
}
return max_length;
}
/**
* Convert an array of variable length strings to a character array of fixed length strings. The size of the character
* array is \a num_strings times \a min_string_length or the length of the longest string in \a string_data (whichever
* is larger). Shorter strings will be padded with NUL (termination) characters. The caller is responsible for further
* memory management of the character array.
* \param[in] num_strings Number of strings in the array.
* \param[in] string_data Array of strings to operate on.
* \param[in] min_string_length Minimal fixed string length.
* \param[out] string_length Pointer to the location where the length of the longest string will be stored. If NULL, the
* length will not be stored.
* \param[out] char_data Pointer to the location where the pointer to the character array will be stored.
* \return
* \arg \c 0, Success.
* \arg \c -1, Error occurred (check #harp_errno).
*/
int harp_get_char_array_from_string_array(long num_strings, char **string_data, long min_string_length,
long *string_length, char **char_data)
{
char *buffer;
long length;
long i;
/* Determine fixed string length to use. */
length = harp_get_max_string_length(num_strings, string_data);
if (length < min_string_length)
{
length = min_string_length;
}
/* Allocate character array. */
buffer = malloc((size_t)num_strings * length * sizeof(char));
if (buffer == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
num_strings * length * sizeof(char), __FILE__, __LINE__);
return -1;
}
/* Fill char array with NUL ('\0') characters. */
memset(buffer, '\0', (size_t)(num_strings * length) * sizeof(char));
/* Copy strings. */
for (i = 0; i < num_strings; i++)
{
if (string_data[i] != NULL)
{
memcpy(&buffer[i * length], string_data[i], strlen(string_data[i]));
}
}
if (string_length != NULL)
{
*string_length = length;
}
*char_data = buffer;
return 0;
}
static void fill_int8(long num_elements, int8_t *data, int8_t value)
{
int8_t *last;
last = data + num_elements;
while (data != last)
{
*data = value;
data++;
}
}
static void fill_int16(long num_elements, int16_t *data, int16_t value)
{
int16_t *last;
last = data + num_elements;
while (data != last)
{
*data = value;
data++;
}
}
static void fill_int32(long num_elements, int32_t *data, int32_t value)
{
int32_t *last;
last = data + num_elements;
while (data != last)
{
*data = value;
data++;
}
}
static void fill_float(long num_elements, float *data, float value)
{
float *last;
last = data + num_elements;
while (data != last)
{
*data = value;
data++;
}
}
static void fill_double(long num_elements, double *data, double value)
{
double *last;
last = data + num_elements;
while (data != last)
{
*data = value;
data++;
}
}
static void null_string(long num_elements, char **data)
{
char **last;
last = data + num_elements;
while (data != last)
{
if (*data != NULL)
{
free(*data);
*data = NULL;
}
data++;
}
}
/** Fill an array with the default HARP fill value for the specified data type.
* \param data_type Data type of the array.
* \param num_elements Number of elements in the array.
* \param data Array that should be nulled.
*/
void harp_array_null(harp_data_type data_type, long num_elements, harp_array data)
{
switch (data_type)
{
case harp_type_int8:
fill_int8(num_elements, data.int8_data, 0);
break;
case harp_type_int16:
fill_int16(num_elements, data.int16_data, 0);
break;
case harp_type_int32:
fill_int32(num_elements, data.int32_data, 0);
break;
case harp_type_float:
fill_float(num_elements, data.float_data, (float)harp_nan());
break;
case harp_type_double:
fill_double(num_elements, data.double_data, harp_nan());
break;
case harp_type_string:
null_string(num_elements, data.string_data);
break;
default:
assert(0);
exit(1);
}
}
/** Replace each occurrence of a specific (fill) value in an array with the default HARP fill value for the specified
* data type.
* \param data_type Data type of the array.
* \param num_elements Number of elements in the array.
* \param data Array to operate on.
* \param fill_value Value to be replaced by the default HARP fill value for \a data_type.
*/
void harp_array_replace_fill_value(harp_data_type data_type, long num_elements, harp_array data, harp_scalar fill_value)
{
harp_scalar harp_fill_value;
long i;
if (harp_is_fill_value_for_type(data_type, fill_value))
{
return;
}
harp_fill_value = harp_get_fill_value_for_type(data_type);
switch (data_type)
{
case harp_type_int8:
for (i = 0; i < num_elements; i++)
{
if (data.int8_data[i] == fill_value.int8_data)
{
data.int8_data[i] = harp_fill_value.int8_data;
}
}
break;
case harp_type_int16:
for (i = 0; i < num_elements; i++)
{
if (data.int16_data[i] == fill_value.int16_data)
{
data.int16_data[i] = harp_fill_value.int16_data;
}
}
break;
case harp_type_int32:
for (i = 0; i < num_elements; i++)
{
if (data.int32_data[i] == fill_value.int32_data)
{
data.int32_data[i] = harp_fill_value.int32_data;
}
}
break;
case harp_type_float:
for (i = 0; i < num_elements; i++)
{
if (data.float_data[i] == fill_value.float_data)
{
data.float_data[i] = harp_fill_value.float_data;
}
}
break;
case harp_type_double:
for (i = 0; i < num_elements; i++)
{
if (data.double_data[i] == fill_value.double_data)
{
data.double_data[i] = harp_fill_value.double_data;
}
}
break;
default:
assert(0);
exit(1);
}
}
/** Invert the array across a given dimension
* \param data_type Data type of the array.
* \param dim_id Index of the dimension that should be inverted.
* \param num_dimensions Number of dimensions in the array.
* \param dimension Dimension sizes of the array.
* \param data Array that should have a dimension inverted.
* \return
* \arg \c 0, Success.
* \arg \c -1, Error occurred (check #harp_errno).
*/
int harp_array_invert(harp_data_type data_type, int dim_id, int num_dimensions, const long *dimension, harp_array data)
{
long num_elements;
long block_size;
long length;
long i, j;
assert(dim_id >= 0 && dim_id < num_dimensions);
/* total byte size of array = num_elements * length * block_size */
num_elements = 1;
for (i = 0; i < dim_id; i++)
{
num_elements *= dimension[i];
}
length = dimension[dim_id];
if (length <= 1)
{
/* nothing to do */
return 0;
}
block_size = harp_get_size_for_type(data_type);
for (i = dim_id + 1; i < num_dimensions; i++)
{
block_size *= dimension[i];
}
if (block_size == 1)
{
for (i = 0; i < num_elements; i++)
{
int8_t *block = &data.int8_data[i * length];
for (j = 0; j < length / 2; j++)
{
int8_t temp = block[j];
block[j] = block[length - 1 - j];
block[length - 1 - j] = temp;
}
}
}
else if (block_size == 2)
{
for (i = 0; i < num_elements; i++)
{
int16_t *block = &data.int16_data[i * length];
for (j = 0; j < length / 2; j++)
{
int16_t temp = block[j];
block[j] = block[length - 1 - j];
block[length - 1 - j] = temp;
}
}
}
else if (block_size == 4)
{
for (i = 0; i < num_elements; i++)
{
int32_t *block = &data.int32_data[i * length];
for (j = 0; j < length / 2; j++)
{
int32_t temp = block[j];
block[j] = block[length - 1 - j];
block[length - 1 - j] = temp;
}
}
}
else if (block_size == 8)
{
for (i = 0; i < num_elements; i++)
{
double *block = &data.double_data[i * length];
for (j = 0; j < length / 2; j++)
{
double temp = block[j];
block[j] = block[length - 1 - j];
block[length - 1 - j] = temp;
}
}
}
else
{
uint8_t *buffer;
buffer = (uint8_t *)malloc(length * block_size);
if (buffer == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
dimension[dim_id] * block_size, __FILE__, __LINE__);
return -1;
}
for (i = 0; i < num_elements; i++)
{
int8_t *block = &data.int8_data[i * length * block_size];
for (j = 0; j < length; j++)
{
memcpy(&buffer[j * block_size], &block[(length - 1 - j) * block_size], block_size);
}
memcpy(block, buffer, length * block_size);
}
free(buffer);
}
return 0;
}
/** Permute the dimensions of an array.
*
* If \a order is NULL, the order of the dimensions of the source array will be reversed, i.e. the array will be
* transposed. For example, if the dimensions of the source array are [10, 20, 30], the dimensions of the destination
* array will be [30, 20, 10]. (This is equivalent to specifying an order of [2, 1, 0].)
*
* Otherwise, the order of the dimensions of the source array will permuted according to \a order. For example, if the
* dimensions of the source array are [10, 20, 30] and the specified order is [1, 0, 2], the dimensions of the
* destination array will be [20, 10, 30].
*
* \param data_type Data type of the array.
* \param num_dimensions Number of dimensions in the array.
* \param dimension Dimension lengths of the array.
* \param order If NULL, reverse the order of the dimensions of the array, otherwise permute the order of the dimensions
* of the array according to the order specified.
* \param data Array of which the dimensions should be permuted.
* \return
* \arg \c 0, Success.
* \arg \c -1, Error occurred (check #harp_errno).
*/
int harp_array_transpose(harp_data_type data_type, int num_dimensions, const long *dimension, const int *order,
harp_array data)
{
long rindex[HARP_MAX_NUM_DIMS] = { 0 }; /* reversed index in multi-dimensional array */
long rdim[HARP_MAX_NUM_DIMS]; /* reversed order of dim[] */
long stride[HARP_MAX_NUM_DIMS]; /* stride in the destination array (in reverse order) */
long num_elements;
long element_size;
long index = 0;
long i;
uint8_t *src;
uint8_t *dst;
if (num_dimensions <= 1)
{
/* nothing to do */
return 0;
}
num_elements = harp_get_num_elements(num_dimensions, dimension);
if (num_elements <= 1)
{
/* nothing to do */
return 0;
}
for (i = 0; i < num_dimensions; i++)
{
rdim[i] = dimension[num_dimensions - 1 - i];
}
if (order == NULL)
{
/* By default, reverse the order of the dimensions. */
stride[num_dimensions - 1] = 1;
for (i = num_dimensions - 1; i > 0; i--)
{
stride[i - 1] = stride[i] * rdim[i];
}
}
else
{
int iorder[HARP_MAX_NUM_DIMS] = { 0 }; /* map from destination dimension index to source dimension index */
/* Compute the map from destination dimension index to source dimension index (i.e. the inverse of order, which
* is the map from source dimension index to destination dimension index.
*/
for (i = 0; i < num_dimensions; i++)
{
if (order[i] < 0 || order[i] >= num_dimensions)
{
harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "dimension index '%d' out of bounds at index %d of "
"dimension order (%s:%lu)", order[i], i, __FILE__, __LINE__);
return -1;
}
if (iorder[order[i]] != 0)
{
harp_set_error(HARP_ERROR_INVALID_ARGUMENT, "duplicate dimension index '%d' at index %d of dimension "
"order (%s:%u)", order[i], i, __FILE__, __LINE__);
return -1;
}
iorder[order[i]] = i;
}
/* Compute the stride in the destination array for each dimension of the source array in reverse order. For
* example, stride[0] is the stride in the destination array when moving along the fastest running dimension of
* the source array (i.e. the dimension with index num_dimensions - 1).
*/
for (i = 0; i < num_dimensions; i++)
{
long j;
stride[num_dimensions - 1 - i] = 1;
for (j = iorder[i] + 1; j < num_dimensions; j++)
{
stride[num_dimensions - 1 - i] *= dimension[order[j]];
}
}
}
element_size = harp_get_size_for_type(data_type);
src = (uint8_t *)data.ptr;
dst = (uint8_t *)malloc(num_elements * element_size);
if (dst == NULL)
{
harp_set_error(HARP_ERROR_OUT_OF_MEMORY, "out of memory (could not allocate %lu bytes) (%s:%u)",
num_elements * element_size, __FILE__, __LINE__);
return -1;
}
switch (element_size)
{
case 1:
dst[index] = src[i];
index = stride[0];
rindex[0] = 1;
for (i = 1; i < num_elements; i++)
{
int j = 0;
while (rindex[j] == rdim[j])
{
rindex[j] = 0;
index -= stride[j] * rdim[j];
j++;
index += stride[j];
rindex[j]++;
}
dst[index] = src[i];
index += stride[0];
rindex[0]++;
}
break;
case 2:
((uint16_t *)dst)[0] = ((uint16_t *)src)[0];
index = stride[0];
rindex[0] = 1;
for (i = 1; i < num_elements; i++)
{
int j = 0;
while (rindex[j] == rdim[j])
{
rindex[j] = 0;
index -= stride[j] * rdim[j];
j++;
index += stride[j];
rindex[j]++;
}
((uint16_t *)dst)[index] = ((uint16_t *)src)[i];
index += stride[0];
rindex[0]++;
}
break;
case 4:
((uint32_t *)dst)[0] = ((uint32_t *)src)[0];
index = stride[0];
rindex[0] = 1;
for (i = 1; i < num_elements; i++)
{
int j = 0;
while (rindex[j] == rdim[j])
{
rindex[j] = 0;
index -= stride[j] * rdim[j];
j++;
index += stride[j];
rindex[j]++;
}
((uint32_t *)dst)[index] = ((uint32_t *)src)[i];
index += stride[0];
rindex[0]++;
}
break;
case 8:
((uint64_t *)dst)[0] = ((uint64_t *)src)[0];
index = stride[0];
rindex[0] = 1;
for (i = 1; i < num_elements; i++)
{
long j = 0;
while (rindex[j] == rdim[j])
{
rindex[j] = 0;
index -= stride[j] * rdim[j];
j++;
index += stride[j];
rindex[j]++;
}
((uint64_t *)dst)[index] = ((uint64_t *)src)[i];
index += stride[0];
rindex[0]++;
}
break;
default:
assert(0);
exit(1);
}
memcpy(data.ptr, dst, num_elements * element_size);
free(dst);
return 0;
}
|