1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
{-# LANGUAGE Rank2Types, MultiParamTypeClasses, FunctionalDependencies, UndecidableInstances #-}
module Data.Functor.Contravariant.Adjunction
( Adjunction(..)
, corepAdjunction
, coindexAdjunction
) where
import Control.Monad.Instances ()
import Data.Functor.Contravariant
import Data.Functor.Corepresentable
-- | An adjunction from Hask^op to Hask
--
-- > Op (f a) b ~ Hask a (g b)
--
-- > rightAdjunct unit = id
-- > leftAdjunct counit = id
--
-- Any adjunction from Hask to Hask^op would indirectly
-- permit unsafePerformIO, and therefore does not exist.
class (Contravariant f, Corepresentable g) => Adjunction f g | f -> g, g -> f where
unit :: a -> g (f a) -- monad in Hask
counit :: a -> f (g a) -- comonad in Hask^op
leftAdjunct :: (b -> f a) -> a -> g b
rightAdjunct :: (a -> g b) -> b -> f a
unit = leftAdjunct id
counit = rightAdjunct id
leftAdjunct f = contramap f . unit
rightAdjunct f = contramap f . counit
-- | This adjunction gives rise to the Cont monad
instance Adjunction (Op r) (Op r) where
unit a = Op (\k -> getOp k a)
counit = unit
-- | This gives rise to the Cont Bool monad
instance Adjunction Predicate Predicate where
unit a = Predicate (\k -> getPredicate k a)
counit = unit
-- | Represent a contravariant functor that has a left adjoint
corepAdjunction :: Adjunction f g => (a -> f ()) -> g a
corepAdjunction = flip leftAdjunct ()
coindexAdjunction :: Adjunction f g => g a -> a -> f ()
coindexAdjunction = rightAdjunct . const
|