1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
|
{-# LANGUAGE CPP, NoImplicitPrelude, TemplateHaskell #-}
{-|
Module: Data.Aeson.TH
Copyright: (c) 2011 Bryan O'Sullivan
(c) 2011 MailRank, Inc.
License: Apache
Stability: experimental
Portability: portable
Functions to mechanically derive 'ToJSON' and 'FromJSON' instances. Note that
you need to enable the @TemplateHaskell@ language extension in order to use this
module.
An example shows how instances are generated for arbitrary data types. First we
define a data type:
@
data D a = Nullary
| Unary Int
| Product String Char a
| Record { testOne :: Double
, testTwo :: Bool
, testThree :: D a
} deriving Eq
@
Next we derive the necessary instances. Note that we make use of the feature to
change record field names. In this case we drop the first 4 characters of every
field name.
@
$('deriveJSON' ('drop' 4) ''D)
@
This will result in the following (simplified) code to be spliced in your program:
@
import Control.Applicative
import Control.Monad
import Data.Aeson
import Data.Aeson.TH
import qualified Data.HashMap.Strict as H
import qualified Data.Text as T
import qualified Data.Vector as V
instance 'ToJSON' a => 'ToJSON' (D a) where
'toJSON' =
\value ->
case value of
Nullary ->
'object' [T.pack \"Nullary\" .= 'toJSON' ([] :: [()])]
Unary arg1 ->
'object' [T.pack \"Unary\" .= 'toJSON' arg1]
Product arg1 arg2 arg3 ->
'object' [ T.pack \"Product\"
.= ('Array' $ 'V.create' $ do
mv <- 'VM.unsafeNew' 3
'VM.unsafeWrite' mv 0 ('toJSON' arg1)
'VM.unsafeWrite' mv 1 ('toJSON' arg2)
'VM.unsafeWrite' mv 2 ('toJSON' arg3)
return mv)
]
Record arg1 arg2 arg3 ->
'object' [ T.pack \"Record\"
.= 'object' [ T.pack \"One\" '.=' arg1
, T.pack \"Two\" '.=' arg2
, T.pack \"Three\" '.=' arg3
]
]
@
@
instance 'FromJSON' a => 'FromJSON' (D a) where
'parseJSON' =
\value ->
case value of
'Object' obj ->
case H.toList obj of
[(conKey, conVal)] ->
case conKey of
_ | conKey == T.pack \"Nullary\" ->
case conVal of
'Array' arr ->
if V.null arr
then pure Nullary
else fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
| conKey == T.pack \"Unary\" ->
case conVal of
arg -> Unary \<$\> parseJSON arg
| conKey == T.pack \"Product\" ->
case conVal of
'Array' arr ->
if V.length arr == 3
then Product \<$\> 'parseJSON' (arr `V.unsafeIndex` 0)
\<*\> 'parseJSON' (arr `V.unsafeIndex` 1)
\<*\> 'parseJSON' (arr `V.unsafeIndex` 2)
else fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
| conKey == T.pack \"Record\" ->
case conVal of
'Object' recObj ->
if H.size recObj == 3
then Record \<$\> recObj '.:' T.pack \"One\"
\<*\> recObj '.:' T.pack \"Two\"
\<*\> recObj '.:' T.pack \"Three\"
else fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
| otherwise -> fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
_ -> fail \"\<error message\>\"
@
Note that every \"\<error message\>\" is in fact a descriptive message which
provides as much information as is reasonable about the failed parse.
Now we can use the newly created instances.
@
d :: D 'Int'
d = Record { testOne = 3.14159
, testTwo = 'True'
, testThree = Product \"test\" \'A\' 123
}
@
>>> fromJSON (toJSON d) == Success d
> True
Please note that you can derive instances for tuples using the following syntax:
@
-- FromJSON and ToJSON instances for 4-tuples.
$('deriveJSON' id ''(,,,))
@
-}
module Data.Aeson.TH
( deriveJSON
, deriveToJSON
, deriveFromJSON
, mkToJSON
, mkParseJSON
) where
--------------------------------------------------------------------------------
-- Imports
--------------------------------------------------------------------------------
-- from aeson:
import Data.Aeson ( toJSON, Object, object, (.=)
, ToJSON, toJSON
, FromJSON, parseJSON
)
import Data.Aeson.Types ( Value(..), Parser )
-- from base:
import Control.Applicative ( pure, (<$>), (<*>) )
import Control.Monad ( return, mapM, liftM2, fail )
import Data.Bool ( otherwise )
import Data.Eq ( (==) )
import Data.Function ( ($), (.), id )
import Data.Functor ( fmap )
import Data.List ( (++), foldl, foldl', intercalate
, length, map, zip, genericLength
)
import Data.Maybe ( Maybe(Nothing, Just) )
import Prelude ( String, (-), Integer, fromIntegral, error )
import Text.Printf ( printf )
import Text.Show ( show )
#if __GLASGOW_HASKELL__ < 700
import Control.Monad ( (>>=) )
import Prelude ( fromInteger )
#endif
-- from unordered-containers:
import qualified Data.HashMap.Strict as H ( lookup, toList, size )
-- from template-haskell:
import Language.Haskell.TH
-- from text:
import qualified Data.Text as T ( Text, pack, unpack )
-- from vector:
import qualified Data.Vector as V ( unsafeIndex, null, length, create )
import qualified Data.Vector.Mutable as VM ( unsafeNew, unsafeWrite )
--------------------------------------------------------------------------------
-- Convenience
--------------------------------------------------------------------------------
-- | Generates both 'ToJSON' and 'FromJSON' instance declarations for the given
-- data type.
--
-- This is a convienience function which is equivalent to calling both
-- 'deriveToJSON' and 'deriveFromJSON'.
deriveJSON :: (String -> String)
-- ^ Function to change field names.
-> Name
-- ^ Name of the type for which to generate 'ToJSON' and 'FromJSON'
-- instances.
-> Q [Dec]
deriveJSON withField name =
liftM2 (++)
(deriveToJSON withField name)
(deriveFromJSON withField name)
--------------------------------------------------------------------------------
-- ToJSON
--------------------------------------------------------------------------------
{-
TODO: Don't constrain phantom type variables.
data Foo a = Foo Int
instance (ToJSON a) ⇒ ToJSON Foo where ...
The above (ToJSON a) constraint is not necessary and perhaps undesirable.
-}
-- | Generates a 'ToJSON' instance declaration for the given data type.
--
-- Example:
--
-- @
-- data Foo = Foo 'Char' 'Int'
-- $('deriveToJSON' 'id' ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- instance 'ToJSON' Foo where
-- 'toJSON' =
-- \value -> case value of
-- Foo arg1 arg2 -> 'Array' $ 'V.create' $ do
-- mv <- 'VM.unsafeNew' 2
-- 'VM.unsafeWrite' mv 0 ('toJSON' arg1)
-- 'VM.unsafeWrite' mv 1 ('toJSON' arg2)
-- return mv
-- @
deriveToJSON :: (String -> String)
-- ^ Function to change field names.
-> Name
-- ^ Name of the type for which to generate a 'ToJSON' instance
-- declaration.
-> Q [Dec]
deriveToJSON withField name =
withType name $ \tvbs cons -> fmap (:[]) $ fromCons tvbs cons
where
fromCons :: [TyVarBndr] -> [Con] -> Q Dec
fromCons tvbs cons =
instanceD (return $ map (\t -> ClassP ''ToJSON [VarT t]) typeNames)
(classType `appT` instanceType)
[ funD 'toJSON
[ clause []
(normalB $ consToJSON withField cons)
[]
]
]
where
classType = conT ''ToJSON
typeNames = map tvbName tvbs
instanceType = foldl' appT (conT name) $ map varT typeNames
-- | Generates a lambda expression which encodes the given data type as JSON.
--
-- Example:
--
-- @
-- data Foo = Foo Int
-- @
--
-- @
-- encodeFoo :: Foo -> 'Value'
-- encodeFoo = $('mkToJSON' id ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- \value -> case value of Foo arg1 -> 'toJSON' arg1
-- @
mkToJSON :: (String -> String) -- ^ Function to change field names.
-> Name -- ^ Name of the type to encode.
-> Q Exp
mkToJSON withField name = withType name (\_ cons -> consToJSON withField cons)
-- | Helper function used by both 'deriveToJSON' and 'mkToJSON'. Generates code
-- to generate the JSON encoding of a number of constructors. All constructors
-- must be from the same type.
consToJSON :: (String -> String)
-- ^ Function to change field names.
-> [Con]
-- ^ Constructors for which to generate JSON generating code.
-> Q Exp
consToJSON _ [] = error $ "Data.Aeson.TH.consToJSON: "
++ "Not a single constructor given!"
-- A single constructor is directly encoded. The constructor itself may be
-- forgotten.
consToJSON withField [con] = do
value <- newName "value"
lam1E (varP value)
$ caseE (varE value)
[encodeArgs id withField con]
-- With multiple constructors we need to remember which constructor is
-- encoded. This is done by generating a JSON object which maps to constructor's
-- name to the JSON encoding of its contents.
consToJSON withField cons = do
value <- newName "value"
lam1E (varP value)
$ caseE (varE value)
[ encodeArgs (wrap $ getConName con) withField con
| con <- cons
]
where
wrap :: Name -> Q Exp -> Q Exp
wrap name exp =
let fieldName = [e|T.pack|] `appE` litE (stringL $ nameBase name)
in [e|object|] `appE` listE [ infixApp fieldName
[e|(.=)|]
exp
]
-- | Generates code to generate the JSON encoding of a single constructor.
encodeArgs :: (Q Exp -> Q Exp) -> (String -> String) -> Con -> Q Match
-- Nullary constructors. Generates code that explicitly matches against the
-- constructor even though it doesn't contain data. This is useful to prevent
-- type errors.
encodeArgs withExp _ (NormalC conName []) =
match (conP conName [])
(normalB $ withExp [e|toJSON ([] :: [()])|])
[]
-- Polyadic constructors with special case for unary constructors.
encodeArgs withExp _ (NormalC conName ts) = do
let len = length ts
args <- mapM newName ["arg" ++ show n | n <- [1..len]]
js <- case [[e|toJSON|] `appE` varE arg | arg <- args] of
-- Single argument is directly converted.
[e] -> return e
-- Multiple arguments are converted to a JSON array.
es -> do
mv <- newName "mv"
let newMV = bindS (varP mv)
([e|VM.unsafeNew|] `appE`
litE (integerL $ fromIntegral len))
stmts = [ noBindS $
[e|VM.unsafeWrite|] `appE`
(varE mv) `appE`
litE (integerL ix) `appE`
e
| (ix, e) <- zip [(0::Integer)..] es
]
ret = noBindS $ [e|return|] `appE` varE mv
return $ [e|Array|] `appE`
(varE 'V.create `appE`
doE (newMV:stmts++[ret]))
match (conP conName $ map varP args)
(normalB $ withExp js)
[]
-- Records.
encodeArgs withExp withField (RecC conName ts) = do
args <- mapM newName ["arg" ++ show n | (_, n) <- zip ts [1 :: Integer ..]]
let js = [ infixApp ([e|T.pack|] `appE` fieldNameExp withField field)
[e|(.=)|]
(varE arg)
| (arg, (field, _, _)) <- zip args ts
]
match (conP conName $ map varP args)
(normalB $ withExp $ [e|object|] `appE` listE js)
[]
-- Infix constructors.
encodeArgs withExp _ (InfixC _ conName _) = do
al <- newName "argL"
ar <- newName "argR"
match (infixP (varP al) conName (varP ar))
( normalB
$ withExp
$ [e|toJSON|] `appE` listE [ [e|toJSON|] `appE` varE a
| a <- [al,ar]
]
)
[]
-- Existentially quantified constructors.
encodeArgs withExp withField (ForallC _ _ con) =
encodeArgs withExp withField con
--------------------------------------------------------------------------------
-- FromJSON
--------------------------------------------------------------------------------
-- | Generates a 'FromJSON' instance declaration for the given data type.
--
-- Example:
--
-- @
-- data Foo = Foo Char Int
-- $('deriveFromJSON' id ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- instance 'FromJSON' Foo where
-- 'parseJSON' =
-- \value -> case value of
-- 'Array' arr ->
-- if (V.length arr == 2)
-- then Foo \<$\> 'parseJSON' (arr `V.unsafeIndex` 0)
-- \<*\> 'parseJSON' (arr `V.unsafeIndex` 1)
-- else fail \"\<error message\>\"
-- other -> fail \"\<error message\>\"
-- @
deriveFromJSON :: (String -> String)
-- ^ Function to change field names.
-> Name
-- ^ Name of the type for which to generate a 'FromJSON' instance
-- declaration.
-> Q [Dec]
deriveFromJSON withField name =
withType name $ \tvbs cons -> fmap (:[]) $ fromCons tvbs cons
where
fromCons :: [TyVarBndr] -> [Con] -> Q Dec
fromCons tvbs cons =
instanceD (return $ map (\t -> ClassP ''FromJSON [VarT t]) typeNames)
(classType `appT` instanceType)
[ funD 'parseJSON
[ clause []
(normalB $ consFromJSON name withField cons)
[]
]
]
where
classType = conT ''FromJSON
typeNames = map tvbName tvbs
instanceType = foldl' appT (conT name) $ map varT typeNames
-- | Generates a lambda expression which parses the JSON encoding of the given
-- data type.
--
-- Example:
--
-- @
-- data Foo = Foo 'Int'
-- @
--
-- @
-- parseFoo :: 'Value' -> 'Parser' Foo
-- parseFoo = $('mkParseJSON' id ''Foo)
-- @
--
-- This will splice in the following code:
--
-- @
-- \\value -> case value of arg -> Foo \<$\> 'parseJSON' arg
-- @
mkParseJSON :: (String -> String) -- ^ Function to change field names.
-> Name -- ^ Name of the encoded type.
-> Q Exp
mkParseJSON withField name =
withType name (\_ cons -> consFromJSON name withField cons)
-- | Helper function used by both 'deriveFromJSON' and 'mkParseJSON'. Generates
-- code to parse the JSON encoding of a number of constructors. All constructors
-- must be from the same type.
consFromJSON :: Name
-- ^ Name of the type to which the constructors belong.
-> (String -> String)
-- ^ Function to change field names.
-> [Con]
-- ^ Constructors for which to generate JSON parsing code.
-> Q Exp
consFromJSON _ _ [] = error $ "Data.Aeson.TH.consFromJSON: "
++ "Not a single constructor given!"
consFromJSON tName withField [con] = do
value <- newName "value"
lam1E (varP value)
$ caseE (varE value)
(parseArgs tName withField con)
consFromJSON tName withField cons = do
value <- newName "value"
obj <- newName "obj"
conKey <- newName "conKey"
conVal <- newName "conVal"
let -- Convert the Data.Map inside the Object to a list and pattern match
-- against it. It must contain a single element otherwise the parse will
-- fail.
caseLst = caseE ([e|H.toList|] `appE` varE obj)
[ match (listP [tupP [varP conKey, varP conVal]])
(normalB caseKey)
[]
, do other <- newName "other"
match (varP other)
(normalB $ [|wrongPairCountFail|]
`appE` (litE $ stringL $ show tName)
`appE` ([|show . length|] `appE` varE other)
)
[]
]
caseKey = caseE (varE conKey)
[match wildP (guardedB guards) []]
guards = [ do g <- normalG $ infixApp (varE conKey)
[|(==)|]
( [|T.pack|]
`appE` conNameExp con
)
e <- caseE (varE conVal)
(parseArgs tName withField con)
return (g, e)
| con <- cons
]
++
[ liftM2 (,)
(normalG [e|otherwise|])
( [|conNotFoundFail|]
`appE` (litE $ stringL $ show tName)
`appE` listE (map (litE . stringL . nameBase . getConName) cons)
`appE` ([|T.unpack|] `appE` varE conKey)
)
]
lam1E (varP value)
$ caseE (varE value)
[ match (conP 'Object [varP obj])
(normalB caseLst)
[]
, do other <- newName "other"
match (varP other)
( normalB
$ [|noObjectFail|]
`appE` (litE $ stringL $ show tName)
`appE` ([|valueConName|] `appE` varE other)
)
[]
]
-- | Generates code to parse the JSON encoding of a single constructor.
parseArgs :: Name -- ^ Name of the type to which the constructor belongs.
-> (String -> String) -- ^ Function to change field names.
-> Con -- ^ Constructor for which to generate JSON parsing code.
-> [Q Match]
-- Nullary constructors.
parseArgs tName _ (NormalC conName []) =
[ do arr <- newName "arr"
match (conP 'Array [varP arr])
( normalB $ condE ([|V.null|] `appE` varE arr)
([e|pure|] `appE` conE conName)
( parseTypeMismatch tName conName
(litE $ stringL "an empty Array")
( infixApp (litE $ stringL $ "Array of length ")
[|(++)|]
([|show . V.length|] `appE` varE arr)
)
)
)
[]
, matchFailed tName conName "Array"
]
-- Unary constructors.
parseArgs _ _ (NormalC conName [_]) =
[ do arg <- newName "arg"
match (varP arg)
( normalB $ infixApp (conE conName)
[e|(<$>)|]
([e|parseJSON|] `appE` varE arg)
)
[]
]
-- Polyadic constructors.
parseArgs tName _ (NormalC conName ts) = parseProduct tName conName $ genericLength ts
-- Records.
parseArgs tName withField (RecC conName ts) =
[ do obj <- newName "recObj"
let x:xs = [ [|lookupField|]
`appE` (litE $ stringL $ show tName)
`appE` (litE $ stringL $ nameBase conName)
`appE` (varE obj)
`appE` ( [e|T.pack|]
`appE`
fieldNameExp withField field
)
| (field, _, _) <- ts
]
match (conP 'Object [varP obj])
( normalB $ condE ( infixApp ([|H.size|] `appE` varE obj)
[|(==)|]
(litE $ integerL $ genericLength ts)
)
( foldl' (\a b -> infixApp a [|(<*>)|] b)
(infixApp (conE conName) [|(<$>)|] x)
xs
)
( parseTypeMismatch tName conName
( litE $ stringL $ "Object with "
++ show (length ts)
++ " name/value pairs"
)
( infixApp ([|show . H.size|] `appE` varE obj)
[|(++)|]
(litE $ stringL $ " name/value pairs")
)
)
)
[]
, matchFailed tName conName "Object"
]
-- Infix constructors. Apart from syntax these are the same as
-- polyadic constructors.
parseArgs tName _ (InfixC _ conName _) = parseProduct tName conName 2
-- Existentially quantified constructors. We ignore the quantifiers
-- and proceed with the contained constructor.
parseArgs tName withField (ForallC _ _ con) = parseArgs tName withField con
-- | Generates code to parse the JSON encoding of an n-ary
-- constructor.
parseProduct :: Name -- ^ Name of the type to which the constructor belongs.
-> Name -- ^ 'Con'structor name.
-> Integer -- ^ 'Con'structor arity.
-> [Q Match]
parseProduct tName conName numArgs =
[ do arr <- newName "arr"
-- List of: "parseJSON (arr `V.unsafeIndex` <IX>)"
let x:xs = [ [|parseJSON|]
`appE`
infixApp (varE arr)
[|V.unsafeIndex|]
(litE $ integerL ix)
| ix <- [0 .. numArgs - 1]
]
match (conP 'Array [varP arr])
(normalB $ condE ( infixApp ([|V.length|] `appE` varE arr)
[|(==)|]
(litE $ integerL numArgs)
)
( foldl' (\a b -> infixApp a [|(<*>)|] b)
(infixApp (conE conName) [|(<$>)|] x)
xs
)
( parseTypeMismatch tName conName
(litE $ stringL $ "Array of length " ++ show numArgs)
( infixApp (litE $ stringL $ "Array of length ")
[|(++)|]
([|show . V.length|] `appE` varE arr)
)
)
)
[]
, matchFailed tName conName "Array"
]
--------------------------------------------------------------------------------
-- Parsing errors
--------------------------------------------------------------------------------
matchFailed :: Name -> Name -> String -> MatchQ
matchFailed tName conName expected = do
other <- newName "other"
match (varP other)
( normalB $ parseTypeMismatch tName conName
(litE $ stringL expected)
([|valueConName|] `appE` varE other)
)
[]
parseTypeMismatch :: Name -> Name -> ExpQ -> ExpQ -> ExpQ
parseTypeMismatch tName conName expected actual =
foldl appE
[|parseTypeMismatch'|]
[ litE $ stringL $ nameBase conName
, litE $ stringL $ show tName
, expected
, actual
]
lookupField :: (FromJSON a) => String -> String -> Object -> T.Text -> Parser a
lookupField tName rec obj key =
case H.lookup key obj of
Nothing -> unknownFieldFail tName rec (T.unpack key)
Just v -> parseJSON v
unknownFieldFail :: String -> String -> String -> Parser fail
unknownFieldFail tName rec key =
fail $ printf "When parsing the record %s of type %s the key %s was not present."
rec tName key
noObjectFail :: String -> String -> Parser fail
noObjectFail t o =
fail $ printf "When parsing %s expected Object but got %s." t o
wrongPairCountFail :: String -> String -> Parser fail
wrongPairCountFail t n =
fail $ printf "When parsing %s expected an Object with a single name/value pair but got %s pairs."
t n
conNotFoundFail :: String -> [String] -> String -> Parser fail
conNotFoundFail t cs o =
fail $ printf "When parsing %s expected an Object with a name/value pair where the name is one of [%s], but got %s."
t (intercalate ", " cs) o
parseTypeMismatch' :: String -> String -> String -> String -> Parser fail
parseTypeMismatch' tName conName expected actual =
fail $ printf "When parsing the constructor %s of type %s expected %s but got %s."
conName tName expected actual
--------------------------------------------------------------------------------
-- Utility functions
--------------------------------------------------------------------------------
-- | Boilerplate for top level splices.
--
-- The given 'Name' must be from a type constructor. Furthermore, the
-- type constructor must be either a data type or a newtype. Any other
-- value will result in an exception.
withType :: Name
-> ([TyVarBndr] -> [Con] -> Q a)
-- ^ Function that generates the actual code. Will be applied
-- to the type variable binders and constructors extracted
-- from the given 'Name'.
-> Q a
-- ^ Resulting value in the 'Q'uasi monad.
withType name f = do
info <- reify name
case info of
TyConI dec ->
case dec of
DataD _ _ tvbs cons _ -> f tvbs cons
NewtypeD _ _ tvbs con _ -> f tvbs [con]
other -> error $ "Data.Aeson.TH.withType: Unsupported type: "
++ show other
_ -> error "Data.Aeson.TH.withType: I need the name of a type."
-- | Extracts the name from a constructor.
getConName :: Con -> Name
getConName (NormalC name _) = name
getConName (RecC name _) = name
getConName (InfixC _ name _) = name
getConName (ForallC _ _ con) = getConName con
-- | Extracts the name from a type variable binder.
tvbName :: TyVarBndr -> Name
tvbName (PlainTV name ) = name
tvbName (KindedTV name _) = name
-- | Makes a string literal expression from a constructor's name.
conNameExp :: Con -> Q Exp
conNameExp = litE . stringL . nameBase . getConName
-- | Creates a string literal expression from a record field name.
fieldNameExp :: (String -> String) -- ^ Function to change the field name.
-> Name
-> Q Exp
fieldNameExp f = litE . stringL . f . nameBase
-- | The name of the outermost 'Value' constructor.
valueConName :: Value -> String
valueConName (Object _) = "Object"
valueConName (Array _) = "Array"
valueConName (String _) = "String"
valueConName (Number _) = "Number"
valueConName (Bool _) = "Boolean"
valueConName Null = "Null"
|