1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
{-# LANGUAGE UnboxedTuples, BangPatterns, MultiWayIf #-}
module DoubleToScientific (
doubleToScientific,
doubleToScientificTests,
) where
-- import Debug.Trace
-- import Data.Ratio ((%))
import Data.Bits
import Data.Foldable (foldl')
import Data.Word (Word64)
import Data.Scientific (Scientific)
import GHC.Integer (quotRemInteger)
import qualified Data.Scientific as Sci
import CastFloat
import Types (UniformWord64 (..))
import Test.Tasty (TestTree, testGroup)
import Test.Tasty.QuickCheck (testProperty, counterexample, (===), (==>))
-------------------------------------------------------------------------------
-- tests
-------------------------------------------------------------------------------
-- note: RFC8785 has some special cases.
doubleToScientificTests :: TestTree
doubleToScientificTests = testGroup "doubleToScientific"
[ testProperty "roundtrip1" $ \d ->
Sci.toRealFloat (doubleToScientific d) === d
, testProperty "roundtrip2" $ \(U64 w) ->
let d = castWord64ToDouble w
in counterexample (show d) $
not (isInfinite d || isNaN d) ==>
Sci.toRealFloat (doubleToScientific d) === d
]
-------------------------------------------------------------------------------
-- doubleToScientific
-------------------------------------------------------------------------------
{- Convert 'Double' to 'Scientific'
Based on double-conversion implementation
https://github.com/google/double-conversion
Copyright 2006-2011, the V8 project authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-}
doubleToScientific :: Double -> Scientific
doubleToScientific v = case compare v 0 of
EQ -> 0
LT -> negate (doubleToScientific' (negate v))
GT -> doubleToScientific' v
-------------------------------------------------------------------------------
-- doubleToScientific implementation
-------------------------------------------------------------------------------
data S = S
{ num :: !Integer
, den :: !Integer
, delta_m :: !Integer
, delta_p :: !Integer
, is_even :: !Bool
}
deriving Show
-- preconditions: v > 0
doubleToScientific' :: Double -> Scientific
doubleToScientific' v =
let s1 = initialStartValues v
(s2, pow10) = fixupMultiply10 s1
ds = generateShortestDigits s2
k = length ds
in Sci.scientific (foldl' (\acc d -> 10 * acc + d) 0 ds) (pow10 - k + 1)
-- error $ show (s1, s2, pow10, fromRational (num s2 % den s2), ds)
initialStartValues :: Double -> S
initialStartValues v = lowerBoundaryCloser' $ applyExponent e S
{ num = shiftL s 1
, den = 2
, delta_m = 1
, delta_p = 1
, is_even = evenInteger s
}
where
(s, e, lower_boundary_is_closer) = decodeFloat' v
lowerBoundaryCloser' = if lower_boundary_is_closer then lowerBoundaryCloser else id
-- | return significant, exponent and whether lower boundery is closer.
--
-- GHC's decodeFloat does "weird" stuff to denormal doubles,
-- that messes up our delta calculation.
decodeFloat' :: Double -> (Integer, Int, Bool)
decodeFloat' d
| denormal = (toInteger s, kDenormalExponent, False)
| otherwise = (toInteger (s .|. kHiddenBit), fromIntegral e - kExponentBias, w64 .&. kSignificandMask == 0)
where
denormal = w64 .&. kExponentMask == 0
s = w64 .&. kSignificandMask
e = shiftR (w64 .&. kExponentMask) kPhysicalSignificandSize
w64 = castDoubleToWord64 d
kExponentMask = 0x7FF0000000000000 :: Word64
kSignificandMask = 0x000FFFFFFFFFFFFF :: Word64
kHiddenBit = 0x0010000000000000 :: Word64
kPhysicalSignificandSize = 52 :: Int
kExponentBias = 0x3FF + kPhysicalSignificandSize :: Int
kDenormalExponent = -kExponentBias + 1 :: Int
lowerBoundaryCloser :: S -> S
lowerBoundaryCloser s = s
{ num = shiftL (num s) 1
, den = shiftL (den s) 1
, delta_p = shiftL (delta_p s) 1
}
applyExponent :: Int -> S -> S
applyExponent e s = case compare e 0 of
EQ -> s
GT -> S
{ num = shiftL (num s) e
, den = den s
, delta_m = shiftL (delta_m s) e
, delta_p = shiftL (delta_m s) e
, is_even = is_even s
}
LT -> S
{ num = num s
, den = shiftL (den s) (negate e)
, delta_m = delta_m s
, delta_p = delta_m s
, is_even = is_even s
}
-- This routine multiplies numerator/denominator so that its values lies in the
-- range 1-10. That is after a call to this function we have:
-- 1 <= (numerator + delta_plus) / denominator < 10.
fixupMultiply10 :: S -> (S, Int)
fixupMultiply10 = go 0 where
go p s = case compare (den s) (num s + delta_p s) of
GT -> go (p - 1) (times10 s)
EQ -> (s, p) -- TODO: is_even check?
LT -> case compare (num s + delta_p s) (10 * den s) of
LT -> (s, p)
_ -> go (p + 1) (div10 s)
times10 :: S -> S
times10 s = s { num = 10 * num s, delta_p = 10 * delta_p s, delta_m = 10 * delta_m s }
div10 :: S -> S
div10 s = s { den = 10 * den s }
generateShortestDigits :: S -> [Integer]
generateShortestDigits = go where
go s = case quotRemInteger (num s) (den s) of
(# d, r #) -> if
| not in_delta_room_minus
, not in_delta_room_plus
-> d : go (times10 s { num = r })
| in_delta_room_minus
, in_delta_room_plus
-- Let's see if 2*numerator < denominator.
-- If yes, then the next digit would be < 5 and we can round down.
-> case compare (2 * r) (den s) of
-- Remaining digits are less than .5. -> Round down (== do nothing).
LT -> [d]
-- Remaining digits are more than .5 of denominator. -> Round up.
GT -> [d+1]
-- Halfway case.
-- round towards even
EQ -> if evenInteger d then [d] else [d+1]
| in_delta_room_minus
-- round down
-> [d]
| otherwise
-- Round up.
-> [d + 1]
where
in_delta_room_minus
| is_even s = r <= delta_m s
| otherwise = r < delta_m s
in_delta_room_plus
| is_even s = r + delta_p s >= den s
| otherwise = r + delta_p s > den s
evenInteger :: Integer -> Bool
evenInteger i = not (testBit i 0)
|