File: Class.hs

package info (click to toggle)
haskell-algebra 2.1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 420 kB
  • sloc: haskell: 4,758; makefile: 2
file content (226 lines) | stat: -rw-r--r-- 7,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
{-# LANGUAGE TypeOperators #-}
module Numeric.Additive.Class
  ( 
  -- * Additive Semigroups
    Additive(..)
  , sum1
  -- * Additive Abelian semigroups
  , Abelian
  -- * Additive Monoids
  , Idempotent
  , sinnum1pIdempotent
  -- * Partitionable semigroups
  , Partitionable(..)
  ) where

import Data.Int
import Data.Word
import Data.Foldable hiding (concat)
import Data.Semigroup.Foldable
import Data.Key
import Data.Functor.Representable
import Data.Functor.Representable.Trie
-- import Data.Foldable hiding (concat)
import Numeric.Natural.Internal
import Prelude (fmap,(-),Bool(..),($),id,(>>=),fromIntegral,(*),otherwise,quot,maybe,error,even,Maybe(..),(==),(.),($!),Integer,(||),toInteger,Integral)
import qualified Prelude
import Data.List.NonEmpty (NonEmpty(..), fromList)

infixl 6 +

-- | 
-- > (a + b) + c = a + (b + c)
-- > sinnum 1 a = a
-- > sinnum (2 * n) a = sinnum n a + sinnum n a
-- > sinnum (2 * n + 1) a = sinnum n a + sinnum n a + a
class Additive r where
  (+) :: r -> r -> r

  -- | sinnum1p n r = sinnum (1 + n) r
  sinnum1p :: Whole n => n -> r -> r
  sinnum1p y0 x0 = f x0 (1 Prelude.+ y0)
    where
      f x y
        | even y = f (x + x) (y `quot` 2)
        | y == 1 = x
        | otherwise = g (x + x) (unsafePred y  `quot` 2) x
      g x y z
        | even y = g (x + x) (y `quot` 2) z
        | y == 1 = x + z
        | otherwise = g (x + x) (unsafePred y `quot` 2) (x + z)

  sumWith1 :: Foldable1 f => (a -> r) -> f a -> r
  sumWith1 f = maybe (error "Numeric.Additive.Semigroup.sumWith1: empty structure") id . foldl' mf Nothing
     where mf Nothing y = Just $! f y 
           mf (Just x) y = Just $! x + f y

sum1 :: (Foldable1 f, Additive r) => f r -> r
sum1 = sumWith1 id

instance Additive r => Additive (b -> r) where
  f + g = \e -> f e + g e 
  sinnum1p n f e = sinnum1p n (f e)
  sumWith1 f xs e = sumWith1 (`f` e) xs

instance (HasTrie b, Additive r) => Additive (b :->: r) where
  (+) = zipWith (+)
  sinnum1p = fmap . sinnum1p
  sumWith1 f xs = tabulate $ \e -> sumWith1 (\a -> index (f a) e) xs

instance Additive Bool where
  (+) = (||)
  sinnum1p _ a = a

instance Additive Natural where
  (+) = (Prelude.+)
  sinnum1p n r = (1 Prelude.+ toNatural n) * r

instance Additive Integer where 
  (+) = (Prelude.+)
  sinnum1p n r = (1 Prelude.+ toInteger n) * r

instance Additive Int where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Int8 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Int16 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Int32 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Int64 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Word where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Word8 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Word16 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Word32 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive Word64 where
  (+) = (Prelude.+)
  sinnum1p n r = fromIntegral (1 Prelude.+ n) * r

instance Additive () where
  _ + _ = ()
  sinnum1p _ _ = () 
  sumWith1 _ _ = ()

instance (Additive a, Additive b) => Additive (a,b) where
  (a,b) + (i,j) = (a + i, b + j)
  sinnum1p n (a,b) = (sinnum1p n a, sinnum1p n b)

instance (Additive a, Additive b, Additive c) => Additive (a,b,c) where
  (a,b,c) + (i,j,k) = (a + i, b + j, c + k)
  sinnum1p n (a,b,c) = (sinnum1p n a, sinnum1p n b, sinnum1p n c)

instance (Additive a, Additive b, Additive c, Additive d) => Additive (a,b,c,d) where
  (a,b,c,d) + (i,j,k,l) = (a + i, b + j, c + k, d + l)
  sinnum1p n (a,b,c,d) = (sinnum1p n a, sinnum1p n b, sinnum1p n c, sinnum1p n d)

instance (Additive a, Additive b, Additive c, Additive d, Additive e) => Additive (a,b,c,d,e) where
  (a,b,c,d,e) + (i,j,k,l,m) = (a + i, b + j, c + k, d + l, e + m)
  sinnum1p n (a,b,c,d,e) = (sinnum1p n a, sinnum1p n b, sinnum1p n c, sinnum1p n d, sinnum1p n e)


concat :: NonEmpty (NonEmpty a) -> NonEmpty a
concat m = m >>= id

class Additive m => Partitionable m where
  -- | partitionWith f c returns a list containing f a b for each a b such that a + b = c, 
  partitionWith :: (m -> m -> r) -> m -> NonEmpty r

instance Partitionable Bool where
  partitionWith f False = f False False :| []
  partitionWith f True  = f False True :| [f True False, f True True]

instance Partitionable Natural where
  partitionWith f n = fromList [ f k (n - k) | k <- [0..n] ]

instance Partitionable () where
  partitionWith f () = f () () :| []

instance (Partitionable a, Partitionable b) => Partitionable (a,b) where
  partitionWith f (a,b) = concat $ partitionWith (\ax ay -> 
                                   partitionWith (\bx by -> f (ax,bx) (ay,by)) b) a

instance (Partitionable a, Partitionable b, Partitionable c) => Partitionable (a,b,c) where
  partitionWith f (a,b,c) = concat $ partitionWith (\ax ay -> 
                            concat $ partitionWith (\bx by -> 
                                     partitionWith (\cx cy -> f (ax,bx,cx) (ay,by,cy)) c) b) a

instance (Partitionable a, Partitionable b, Partitionable c,Partitionable d ) => Partitionable (a,b,c,d) where
  partitionWith f (a,b,c,d) = concat $ partitionWith (\ax ay -> 
                              concat $ partitionWith (\bx by -> 
                              concat $ partitionWith (\cx cy -> 
                                       partitionWith (\dx dy -> f (ax,bx,cx,dx) (ay,by,cy,dy)) d) c) b) a

instance (Partitionable a, Partitionable b, Partitionable c,Partitionable d, Partitionable e) => Partitionable (a,b,c,d,e) where
  partitionWith f (a,b,c,d,e) = concat $ partitionWith (\ax ay -> 
                                concat $ partitionWith (\bx by -> 
                                concat $ partitionWith (\cx cy -> 
                                concat $ partitionWith (\dx dy -> 
                                         partitionWith (\ex ey -> f (ax,bx,cx,dx,ex) (ay,by,cy,dy,ey)) e) d) c) b) a


-- | an additive abelian semigroup
--
-- a + b = b + a
class Additive r => Abelian r

instance Abelian r => Abelian (e -> r)
instance (HasTrie e, Abelian r) => Abelian (e :->: r)
instance Abelian ()
instance Abelian Bool
instance Abelian Integer
instance Abelian Natural
instance Abelian Int
instance Abelian Int8
instance Abelian Int16
instance Abelian Int32
instance Abelian Int64
instance Abelian Word
instance Abelian Word8
instance Abelian Word16
instance Abelian Word32
instance Abelian Word64
instance (Abelian a, Abelian b) => Abelian (a,b) 
instance (Abelian a, Abelian b, Abelian c) => Abelian (a,b,c) 
instance (Abelian a, Abelian b, Abelian c, Abelian d) => Abelian (a,b,c,d) 
instance (Abelian a, Abelian b, Abelian c, Abelian d, Abelian e) => Abelian (a,b,c,d,e) 

-- | An additive semigroup with idempotent addition.
--
-- > a + a = a
--
class Additive r => Idempotent r

sinnum1pIdempotent :: Natural -> r -> r
sinnum1pIdempotent _ r = r

instance Idempotent ()
instance Idempotent Bool
instance Idempotent r => Idempotent (e -> r)
instance (HasTrie e, Idempotent r) => Idempotent (e :->: r)
instance (Idempotent a, Idempotent b) => Idempotent (a,b)
instance (Idempotent a, Idempotent b, Idempotent c) => Idempotent (a,b,c)
instance (Idempotent a, Idempotent b, Idempotent c, Idempotent d) => Idempotent (a,b,c,d)
instance (Idempotent a, Idempotent b, Idempotent c, Idempotent d, Idempotent e) => Idempotent (a,b,c,d,e)