File: Complex.hs

package info (click to toggle)
haskell-algebra 2.1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 420 kB
  • sloc: haskell: 4,758; makefile: 2
file content (252 lines) | stat: -rw-r--r-- 6,946 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
{-# LANGUAGE MultiParamTypeClasses
           , FlexibleInstances
           , TypeFamilies
           , UndecidableInstances
           , DeriveDataTypeable
           , TypeOperators #-}
module Numeric.Algebra.Complex
  ( Distinguished(..)
  , Complicated(..)
  , ComplexBasis(..)
  , Complex(..)
  , realPart
  , imagPart
  , uncomplicate
  ) where

import Control.Applicative
import Control.Monad.Reader.Class
import Data.Data
import Data.Distributive
import Data.Functor.Bind
import Data.Functor.Representable
import Data.Functor.Representable.Trie
import Data.Foldable
import Data.Ix hiding (index)
import Data.Key
import Data.Semigroup
import Data.Semigroup.Traversable
import Data.Semigroup.Foldable
import Data.Traversable
import Numeric.Algebra
import Numeric.Algebra.Distinguished.Class
import Numeric.Algebra.Complex.Class
import Numeric.Algebra.Quaternion.Class
import Prelude hiding ((-),(+),(*),negate,subtract, fromInteger,recip)

-- complex basis
data ComplexBasis = E | I deriving (Eq,Ord,Show,Read,Enum,Ix,Bounded,Data,Typeable)
data Complex a = Complex a a deriving (Eq,Show,Read,Data,Typeable)

realPart :: (Representable f, Key f ~ ComplexBasis) => f a -> a
realPart f = index f E 

imagPart :: (Representable f, Key f ~ ComplexBasis) => f a -> a
imagPart f = index f I

instance Distinguished ComplexBasis where
  e = E
  
instance Complicated ComplexBasis where
  i = I

instance Rig r => Distinguished (Complex r) where
  e = Complex one zero

instance Rig r => Complicated (Complex r) where
  i = Complex zero one

instance Rig r => Distinguished (ComplexBasis -> r) where
  e E = one
  e _ = zero
  
instance Rig r => Complicated (ComplexBasis -> r) where
  i I = one
  i _ = zero 

instance Rig r => Distinguished (ComplexBasis :->: r) where
  e = Trie e
  
instance Rig r => Complicated (ComplexBasis :->: r) where
  i = Trie i

type instance Key Complex = ComplexBasis

instance Representable Complex where
  tabulate f = Complex (f E) (f I)

instance Indexable Complex where
  index (Complex a _ ) E = a
  index (Complex _ b ) I = b

instance Lookup Complex where
  lookup = lookupDefault

instance Adjustable Complex where
  adjust f E (Complex a b) = Complex (f a) b
  adjust f I (Complex a b) = Complex a (f b)

instance Distributive Complex where
  distribute = distributeRep 

instance Functor Complex where
  fmap f (Complex a b) = Complex (f a) (f b)

instance Zip Complex where
  zipWith f (Complex a1 b1) (Complex a2 b2) = Complex (f a1 a2) (f b1 b2)

instance ZipWithKey Complex where
  zipWithKey f (Complex a1 b1) (Complex a2 b2) = Complex (f E a1 a2) (f I b1 b2)

instance Keyed Complex where
  mapWithKey = mapWithKeyRep

instance Apply Complex where
  (<.>) = apRep

instance Applicative Complex where
  pure = pureRep
  (<*>) = apRep 

instance Bind Complex where
  (>>-) = bindRep

instance Monad Complex where
  return = pureRep
  (>>=) = bindRep

instance MonadReader ComplexBasis Complex where
  ask = askRep
  local = localRep

instance Foldable Complex where
  foldMap f (Complex a b) = f a `mappend` f b

instance FoldableWithKey Complex where
  foldMapWithKey f (Complex a b) = f E a `mappend` f I b

instance Traversable Complex where
  traverse f (Complex a b) = Complex <$> f a <*> f b

instance TraversableWithKey Complex where
  traverseWithKey f (Complex a b) = Complex <$> f E a <*> f I b

instance Foldable1 Complex where
  foldMap1 f (Complex a b) = f a <> f b

instance FoldableWithKey1 Complex where
  foldMapWithKey1 f (Complex a b) = f E a <> f I b

instance Traversable1 Complex where
  traverse1 f (Complex a b) = Complex <$> f a <.> f b

instance TraversableWithKey1 Complex where
  traverseWithKey1 f (Complex a b) = Complex <$> f E a <.> f I b

instance HasTrie ComplexBasis where
  type BaseTrie ComplexBasis = Complex
  embedKey = id
  projectKey = id

instance Additive r => Additive (Complex r) where
  (+) = addRep 
  sinnum1p = sinnum1pRep

instance LeftModule r s => LeftModule r (Complex s) where
  r .* Complex a b = Complex (r .* a) (r .* b)

instance RightModule r s => RightModule r (Complex s) where
  Complex a b *. r = Complex (a *. r) (b *. r)

instance Monoidal r => Monoidal (Complex r) where
  zero = zeroRep
  sinnum = sinnumRep

instance Group r => Group (Complex r) where
  (-) = minusRep
  negate = negateRep
  subtract = subtractRep
  times = timesRep

instance Abelian r => Abelian (Complex r)

instance Idempotent r => Idempotent (Complex r)

instance Partitionable r => Partitionable (Complex r) where
  partitionWith f (Complex a b) = id =<<
    partitionWith (\a1 a2 -> 
    partitionWith (\b1 b2 -> f (Complex a1 b1) (Complex a2 b2)) b) a

instance Rng k => Algebra k ComplexBasis where
  mult f = f' where
    fe = f E E - f I I
    fi = f E I + f I E
    f' E = fe
    f' I = fi

instance Rng k => UnitalAlgebra k ComplexBasis where
  unit x E = x
  unit _ _ = zero

-- the trivial coalgebra
instance Rng k => Coalgebra k ComplexBasis where
  comult f E E = f E
  comult f I I = f I
  comult _ _ _ = zero

instance Rng k => CounitalCoalgebra k ComplexBasis where
  counit f = f E + f I

instance Rng k => Bialgebra k ComplexBasis 

instance (InvolutiveSemiring k, Rng k) => InvolutiveAlgebra k ComplexBasis where
  inv f = f' where
    afe = adjoint (f E)
    nfi = negate (f I)
    f' E = afe
    f' I = nfi

instance (InvolutiveSemiring k, Rng k) => InvolutiveCoalgebra k ComplexBasis where
  coinv = inv

instance (InvolutiveSemiring k, Rng k) => HopfAlgebra k ComplexBasis where
  antipode = inv

instance (Commutative r, Rng r) => Multiplicative (Complex r) where
  (*) = mulRep

instance (TriviallyInvolutive r, Rng r) => Commutative (Complex r)

instance (Commutative r, Rng r) => Semiring (Complex r)

instance (Commutative r, Ring r) => Unital (Complex r) where
  one = oneRep

instance (Commutative r, Ring r) => Rig (Complex r) where
  fromNatural n = Complex (fromNatural n) zero

instance (Commutative r, Ring r) => Ring (Complex r) where
  fromInteger n = Complex (fromInteger n) zero

instance (Commutative r, Rng r) => LeftModule (Complex r) (Complex r) where (.*) = (*)
instance (Commutative r, Rng r) => RightModule (Complex r) (Complex r) where (*.) = (*)

instance (Commutative r, Rng r, InvolutiveMultiplication r) => InvolutiveMultiplication (Complex r) where
  adjoint (Complex a b) = Complex (adjoint a) (negate b)

instance (Commutative r, Rng r, InvolutiveSemiring r) => InvolutiveSemiring (Complex r)

instance (Commutative r, Rng r, InvolutiveSemiring r) => Quadrance r (Complex r) where
  quadrance n = realPart $ adjoint n * n

instance (Commutative r, InvolutiveSemiring r, DivisionRing r) => Division (Complex r) where
  recip q@(Complex a b) = Complex (qq \\ a) (qq \\ b)
    where qq = quadrance q

-- | half of the Cayley-Dickson quaternion isomorphism 
uncomplicate :: Hamiltonian q => ComplexBasis -> ComplexBasis -> q
uncomplicate E E = e
uncomplicate I E = i
uncomplicate E I = j
uncomplicate I I = k