1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
{-# LANGUAGE RebindableSyntax, FlexibleContexts #-}
module Numeric.Module.Representable
(
-- * Representable Additive
addRep, sinnum1pRep
-- * Representable Monoidal
, zeroRep, sinnumRep
-- * Representable Group
, negateRep, minusRep, subtractRep, timesRep
-- * Representable Multiplicative (via Algebra)
, mulRep
-- * Representable Unital (via UnitalAlgebra)
, oneRep
-- * Representable Rig (via Algebra)
, fromNaturalRep
-- * Representable Ring (via Algebra)
, fromIntegerRep
) where
import Control.Applicative
import Data.Functor
import Data.Functor.Representable
import Data.Key
import Numeric.Additive.Class
import Numeric.Additive.Group
import Numeric.Algebra.Class
import Numeric.Algebra.Unital
import Numeric.Natural.Internal
import Numeric.Rig.Class
import Numeric.Ring.Class
import Control.Category
import Prelude (($), Integral(..),Integer)
-- | `Additive.(+)` default definition
addRep :: (Zip m, Additive r) => m r -> m r -> m r
addRep = zipWith (+)
-- | `Additive.sinnum1p` default definition
sinnum1pRep :: (Whole n, Functor m, Additive r) => n -> m r -> m r
sinnum1pRep = fmap . sinnum1p
-- | `Monoidal.zero` default definition
zeroRep :: (Applicative m, Monoidal r) => m r
zeroRep = pure zero
-- | `Monoidal.sinnum` default definition
sinnumRep :: (Whole n, Functor m, Monoidal r) => n -> m r -> m r
sinnumRep = fmap . sinnum
-- | `Group.negate` default definition
negateRep :: (Functor m, Group r) => m r -> m r
negateRep = fmap negate
-- | `Group.(-)` default definition
minusRep :: (Zip m, Group r) => m r -> m r -> m r
minusRep = zipWith (-)
-- | `Group.subtract` default definition
subtractRep :: (Zip m, Group r) => m r -> m r -> m r
subtractRep = zipWith subtract
-- | `Group.times` default definition
timesRep :: (Integral n, Functor m, Group r) => n -> m r -> m r
timesRep = fmap . times
-- | `Multiplicative.(*)` default definition
mulRep :: (Representable m, Algebra r (Key m)) => m r -> m r -> m r
mulRep m n = tabulate $ mult (\b1 b2 -> index m b1 * index n b2)
-- | `Unital.one` default definition
oneRep :: (Representable m, Unital r, UnitalAlgebra r (Key m)) => m r
oneRep = tabulate $ unit one
-- | `Rig.fromNatural` default definition
fromNaturalRep :: (UnitalAlgebra r (Key m), Representable m, Rig r) => Natural -> m r
fromNaturalRep n = tabulate $ unit (fromNatural n)
-- | `Ring.fromInteger` default definition
fromIntegerRep :: (UnitalAlgebra r (Key m), Representable m, Ring r) => Integer -> m r
fromIntegerRep n = tabulate $ unit (fromInteger n)
|