File: SieveBlock.hs

package info (click to toggle)
haskell-arithmoi 0.13.0.0-1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 988 kB
  • sloc: haskell: 10,437; makefile: 5
file content (212 lines) | stat: -rw-r--r-- 7,830 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
-- |
-- Module:      Math.NumberTheory.ArithmeticFunctions.SieveBlock
-- Copyright:   (c) 2017 Andrew Lelechenko
-- Licence:     MIT
-- Maintainer:  Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- Bulk evaluation of arithmetic functions over continuous intervals
-- without factorisation.
--

{-# LANGUAGE BangPatterns        #-}
{-# LANGUAGE MagicHash           #-}
{-# LANGUAGE ScopedTypeVariables #-}

module Math.NumberTheory.ArithmeticFunctions.SieveBlock
  ( runFunctionOverBlock
  , SieveBlockConfig(..)
  , multiplicativeSieveBlockConfig
  , additiveSieveBlockConfig
  , sieveBlock
  , sieveBlockUnboxed
  , sieveBlockMoebius
  ) where

import Control.Monad (forM_, when)
import Control.Monad.ST (runST)
import Data.Bits
import Data.Coerce
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Generic.Mutable as MG
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Unboxed.Mutable as MU
import GHC.Exts

import Math.NumberTheory.ArithmeticFunctions.Class
import Math.NumberTheory.ArithmeticFunctions.Moebius (Moebius, sieveBlockMoebius)
import Math.NumberTheory.Logarithms (wordLog2, integerLogBase')
import Math.NumberTheory.Primes
import Math.NumberTheory.Primes.Types
import Math.NumberTheory.Roots (integerSquareRoot)
import Math.NumberTheory.Utils.FromIntegral (wordToInt, intToWord)

-- | A record, which specifies a function to evaluate over a block.
--
-- For example, here is a configuration for the totient function:
--
-- > SieveBlockConfig
-- >   { sbcEmpty                = 1
-- >   , sbcFunctionOnPrimePower = \p a -> (unPrime p - 1) * unPrime p ^ (a - 1)
-- >   , sbcAppend               = (*)
-- >   }
data SieveBlockConfig a = SieveBlockConfig
  { sbcEmpty                :: a
    -- ^ value of a function on 1
  , sbcFunctionOnPrimePower :: Prime Word -> Word -> a
    -- ^ how to evaluate a function on prime powers
  , sbcAppend               :: a -> a -> a
    -- ^ how to combine values of a function on coprime arguments
  }

-- | Create a config for a multiplicative function from its definition on prime powers.
multiplicativeSieveBlockConfig :: Num a => (Prime Word -> Word -> a) -> SieveBlockConfig a
multiplicativeSieveBlockConfig f = SieveBlockConfig
  { sbcEmpty                = 1
  , sbcFunctionOnPrimePower = f
  , sbcAppend               = (*)
  }

-- | Create a config for an additive function from its definition on prime powers.
additiveSieveBlockConfig :: Num a => (Prime Word -> Word -> a) -> SieveBlockConfig a
additiveSieveBlockConfig f = SieveBlockConfig
  { sbcEmpty                = 0
  , sbcFunctionOnPrimePower = f
  , sbcAppend               = (+)
  }

-- | 'runFunctionOverBlock' @f@ @x@ @l@ evaluates an arithmetic function
-- for integers between @x@ and @x+l-1@ and returns a vector of length @l@.
-- It completely avoids factorisation, so it is asymptotically faster than
-- pointwise evaluation of @f@.
--
-- Value of @f@ at 0, if zero falls into block, is undefined.
--
-- Beware that for underlying non-commutative monoids the results may potentially
-- differ from pointwise application via 'runFunction'.
--
-- This is a thin wrapper over 'sieveBlock', read more details there.
--
-- >>> import Math.NumberTheory.ArithmeticFunctions
-- >>> runFunctionOverBlock carmichaelA 1 10
-- [1,1,2,2,4,2,6,2,6,4]
runFunctionOverBlock
  :: ArithmeticFunction Word a
  -> Word
  -> Word
  -> V.Vector a
runFunctionOverBlock (ArithmeticFunction f g) = (G.map g .) . sieveBlock SieveBlockConfig
  { sbcEmpty                = mempty
  , sbcAppend               = mappend
  , sbcFunctionOnPrimePower = coerce f
  }

-- | Evaluate a function over a block in accordance to provided configuration.
-- Value of @f@ at 0, if zero falls into block, is undefined.
--
-- Based on Algorithm M of <https://arxiv.org/pdf/1305.1639.pdf Parity of the number of primes in a given interval and algorithms of the sublinear summation> by A. V. Lelechenko. See Lemma 2 on p. 5 on its algorithmic complexity. For the majority of use-cases its time complexity is O(x^(1+ε)).
--
-- For example, following code lists smallest prime factors:
--
-- >>> sieveBlock (SieveBlockConfig maxBound (\p _ -> unPrime p) min) 2 10 :: Data.Vector.Vector Word
-- [2,3,2,5,2,7,2,3,2,11]
--
-- And this is how to factorise all numbers in a block:
--
-- >>> sieveBlock (SieveBlockConfig [] (\p k -> [(unPrime p, k)]) (++)) 2 10 :: Data.Vector.Vector [(Word, Word)]
-- [[(2,1)],[(3,1)],[(2,2)],[(5,1)],[(2,1),(3,1)],[(7,1)],[(2,3)],[(3,2)],[(2,1),(5,1)],[(11,1)]]
sieveBlock
  :: forall v a.
     G.Vector v a
  => SieveBlockConfig a
  -> Word
  -> Word
  -> v a
sieveBlock _ _ 0 = G.empty
sieveBlock (SieveBlockConfig empty f append) !lowIndex' len' = runST $ do

    let lowIndex :: Int
        lowIndex = wordToInt lowIndex'

        len :: Int
        len = wordToInt len'

        highIndex :: Int
        highIndex = lowIndex + len - 1

        highIndex' :: Word
        highIndex' = intToWord highIndex

        ps :: [Int]
        ps = if highIndex < 4 then [] else map unPrime [nextPrime 2 .. precPrime (integerSquareRoot highIndex)]

    as <- MU.replicate len 1
    bs <- MG.replicate len empty

    let doPrime 2 = do
          let fs = V.generate (wordLog2 highIndex')
                (\k -> f (Prime 2) (intToWord k + 1))
              npLow  = (lowIndex' + 1) `shiftR` 1
              npHigh = highIndex'      `shiftR` 1
          forM_ [npLow .. npHigh] $ \np@(W# np#) -> do
            let ix = wordToInt (np `shiftL` 1) - lowIndex :: Int
                tz = I# (word2Int# (ctz# np#))
            MU.unsafeModify as (\x -> x `shiftL` (tz + 1)) ix
            MG.unsafeModify bs (\y -> y `append` V.unsafeIndex fs tz) ix

        doPrime p = do
          let p' = intToWord p
              f0 = f (Prime p') 1
              logp = integerLogBase' (toInteger p) (toInteger highIndex) - 1
              fs = V.generate logp (\k -> f (Prime p') (intToWord k + 2))
              npLow  = (lowIndex + p - 1) `quot` p
              npHigh = highIndex          `quot` p

          forM_ [npLow .. npHigh] $ \np -> do
            let !(I# ix#) = np * p - lowIndex
                (q, r) = np `quotRem` p
            if r /= 0
            then do
              MU.unsafeModify as (* p')        (I# ix#)
              MG.unsafeModify bs (`append` f0) (I# ix#)
            else do
              let pow = highestPowerDividing p q
              MU.unsafeModify as (\x -> x * p' ^ (pow + 2))                          (I# ix#)
              MG.unsafeModify bs (\y -> y `append` V.unsafeIndex fs (wordToInt pow)) (I# ix#)

    forM_ ps doPrime

    forM_ [0 .. len - 1] $ \k -> do
      a <- MU.unsafeRead as k
      let a' = intToWord (k + lowIndex)
      when (a /= a') $
        MG.unsafeModify bs (\b -> b `append` f (Prime $ a' `quot` a) 1) k

    G.unsafeFreeze bs

-- This is a variant of 'Math.NumberTheory.Utils.splitOff',
-- specialized for better performance.
highestPowerDividing :: Int -> Int -> Word
highestPowerDividing !_ 0 = 0
highestPowerDividing p n = go 0 n
  where
    go !k m = case m `quotRem` p of
      (q, 0) -> go (k + 1) q
      _      -> k

-- | This is 'sieveBlock' specialized to unboxed vectors.
--
-- >>> sieveBlockUnboxed (SieveBlockConfig 1 (\_ a -> a + 1) (*)) 1 10
-- [1,2,2,3,2,4,2,4,3,4]
sieveBlockUnboxed
  :: U.Unbox a
  => SieveBlockConfig a
  -> Word
  -> Word
  -> U.Vector a
sieveBlockUnboxed = sieveBlock

{-# SPECIALIZE sieveBlockUnboxed :: SieveBlockConfig Int  -> Word -> Word -> U.Vector Int  #-}
{-# SPECIALIZE sieveBlockUnboxed :: SieveBlockConfig Word -> Word -> Word -> U.Vector Word #-}
{-# SPECIALIZE sieveBlockUnboxed :: SieveBlockConfig Bool -> Word -> Word -> U.Vector Bool #-}
{-# SPECIALIZE sieveBlockUnboxed :: SieveBlockConfig Moebius -> Word -> Word -> U.Vector Moebius #-}