1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
-- |
-- Module: Math.NumberTheory.ArithmeticFunctions.Standard
-- Copyright: (c) 2016 Andrew Lelechenko
-- Licence: MIT
-- Maintainer: Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- Textbook arithmetic functions.
--
{-# LANGUAGE ScopedTypeVariables #-}
module Math.NumberTheory.ArithmeticFunctions.Standard
( -- * List divisors
divisors, divisorsA
, divisorsList, divisorsListA
, divisorsSmall, divisorsSmallA
, divisorsTo, divisorsToA
-- * Multiplicative functions
, multiplicative
, divisorCount, tau, tauA
, sigma, sigmaA
, totient, totientA
, jordan, jordanA
, ramanujan, ramanujanA
, moebius, moebiusA, Moebius(..), runMoebius
, liouville, liouvilleA
-- * Additive functions
, additive
, smallOmega, smallOmegaA
, bigOmega, bigOmegaA
-- * Misc
, carmichael, carmichaelA
, expMangoldt, expMangoldtA
, isNFree, isNFreeA, nFrees, nFreesBlock
) where
import Data.Coerce
import Data.Euclidean (GcdDomain(divide))
import Data.IntSet (IntSet)
import qualified Data.IntSet as IS
import Data.Maybe
import Data.Set (Set)
import qualified Data.Set as S
import Data.Semigroup
import Math.NumberTheory.ArithmeticFunctions.Class
import Math.NumberTheory.ArithmeticFunctions.Moebius
import Math.NumberTheory.ArithmeticFunctions.NFreedom (nFrees, nFreesBlock)
import Math.NumberTheory.Primes
import Math.NumberTheory.Utils.FromIntegral
import Numeric.Natural
-- | Create a multiplicative function from the function on prime's powers. See examples below.
multiplicative :: Num a => (Prime n -> Word -> a) -> ArithmeticFunction n a
multiplicative f = ArithmeticFunction ((Product .) . f) getProduct
-- | See 'divisorsA'.
divisors :: (UniqueFactorisation n, Ord n) => n -> Set n
divisors = runFunction divisorsA
{-# SPECIALIZE divisors :: Natural -> Set Natural #-}
{-# SPECIALIZE divisors :: Integer -> Set Integer #-}
-- | The set of all (positive) divisors of an argument.
divisorsA :: (Ord n, Num n) => ArithmeticFunction n (Set n)
divisorsA = ArithmeticFunction (\p -> SetProduct . divisorsHelper (unPrime p)) (S.insert 1 . getSetProduct)
divisorsHelper :: Num n => n -> Word -> Set n
divisorsHelper _ 0 = S.empty
divisorsHelper p 1 = S.singleton p
divisorsHelper p a = S.fromDistinctAscList $ p : p * p : map (p ^) [3 .. wordToInt a]
{-# INLINE divisorsHelper #-}
-- | See 'divisorsListA'.
divisorsList :: UniqueFactorisation n => n -> [n]
divisorsList = runFunction divisorsListA
-- | The unsorted list of all (positive) divisors of an argument, produced in lazy fashion.
divisorsListA :: Num n => ArithmeticFunction n [n]
divisorsListA = ArithmeticFunction (\p -> ListProduct . divisorsListHelper (unPrime p)) ((1 :) . getListProduct)
divisorsListHelper :: Num n => n -> Word -> [n]
divisorsListHelper _ 0 = []
divisorsListHelper p 1 = [p]
divisorsListHelper p a = p : p * p : map (p ^) [3 .. wordToInt a]
{-# INLINE divisorsListHelper #-}
-- | See 'divisorsSmallA'.
divisorsSmall :: Int -> IntSet
divisorsSmall = runFunction divisorsSmallA
-- | Same as 'divisors', but with better performance on cost of type restriction.
divisorsSmallA :: ArithmeticFunction Int IntSet
divisorsSmallA = ArithmeticFunction (\p -> IntSetProduct . divisorsHelperSmall (unPrime p)) (IS.insert 1 . getIntSetProduct)
divisorsHelperSmall :: Int -> Word -> IntSet
divisorsHelperSmall _ 0 = IS.empty
divisorsHelperSmall p 1 = IS.singleton p
divisorsHelperSmall p a = IS.fromDistinctAscList $ p : p * p : map (p ^) [3 .. wordToInt a]
{-# INLINE divisorsHelperSmall #-}
-- | See 'divisorsToA'.
divisorsTo :: (UniqueFactorisation n, Integral n) => n -> n -> Set n
divisorsTo to = runFunction (divisorsToA to)
-- | The set of all (positive) divisors up to an inclusive bound.
divisorsToA :: (UniqueFactorisation n, Integral n) => n -> ArithmeticFunction n (Set n)
divisorsToA to = ArithmeticFunction f unwrap
where f p k = BoundedSetProduct (\bound -> divisorsToHelper bound (unPrime p) k)
unwrap (BoundedSetProduct res) = if 1 <= to then S.insert 1 (res to) else res to
-- | Generate at most @a@ powers of @p@ up to an inclusive bound @b@.
divisorsToHelper :: (Ord n, Num n) => n -> n -> Word -> Set n
divisorsToHelper _ _ 0 = S.empty
divisorsToHelper b p 1 = if p <= b then S.singleton p else S.empty
divisorsToHelper b p a = S.fromDistinctAscList $ take (wordToInt a) $ takeWhile (<=b) $ iterate (p*) p
{-# INLINE divisorsToHelper #-}
-- | Synonym for 'tau'.
--
-- >>> map divisorCount [1..10]
-- [1,2,2,3,2,4,2,4,3,4]
divisorCount :: (UniqueFactorisation n, Num a) => n -> a
divisorCount = tau
-- | See 'tauA'.
tau :: (UniqueFactorisation n, Num a) => n -> a
tau = runFunction tauA
-- | The number of (positive) divisors of an argument.
--
-- > tauA = multiplicative (\_ k -> k + 1)
tauA :: Num a => ArithmeticFunction n a
tauA = multiplicative $ const (fromIntegral . succ)
-- | See 'sigmaA'.
sigma :: (UniqueFactorisation n, Integral n, Num a, GcdDomain a) => Word -> n -> a
sigma = runFunction . sigmaA
{-# INLINABLE sigma #-}
-- | The sum of the @k@-th powers of (positive) divisors of an argument.
--
-- > sigmaA = multiplicative (\p k -> sum $ map (p ^) [0..k])
-- > sigmaA 0 = tauA
sigmaA :: (Integral n, Num a, GcdDomain a) => Word -> ArithmeticFunction n a
sigmaA 0 = tauA
sigmaA 1 = multiplicative $ sigmaHelper . fromIntegral' . unPrime
sigmaA a = multiplicative $ sigmaHelper . (^ wordToInt a) . fromIntegral' . unPrime
{-# INLINABLE sigmaA #-}
sigmaHelper :: (Num a, GcdDomain a) => a -> Word -> a
sigmaHelper pa 1 = pa + 1
sigmaHelper pa 2 = pa * pa + pa + 1
sigmaHelper pa k = fromJust ((pa ^ wordToInt (k + 1) - 1) `divide` (pa - 1))
{-# INLINE sigmaHelper #-}
-- | See 'totientA'.
totient :: UniqueFactorisation n => n -> n
totient = runFunction totientA
{-# INLINABLE totient #-}
-- | Calculates the totient of a positive number @n@, i.e.
-- the number of @k@ with @1 <= k <= n@ and @'gcd' n k == 1@,
-- in other words, the order of the group of units in @ℤ/(n)@.
totientA :: Num n => ArithmeticFunction n n
totientA = multiplicative $ jordanHelper . unPrime
{-# INLINABLE totientA #-}
-- | See 'jordanA'.
jordan :: UniqueFactorisation n => Word -> n -> n
jordan = runFunction . jordanA
-- | Calculates the k-th Jordan function of an argument.
--
-- > jordanA 1 = totientA
jordanA :: Num n => Word -> ArithmeticFunction n n
jordanA 0 = multiplicative $ \_ _ -> 0
jordanA 1 = totientA
jordanA a = multiplicative $ jordanHelper . (^ wordToInt a) . unPrime
jordanHelper :: Num n => n -> Word -> n
jordanHelper pa 1 = pa - 1
jordanHelper pa 2 = (pa - 1) * pa
jordanHelper pa k = (pa - 1) * pa ^ wordToInt (k - 1)
{-# INLINE jordanHelper #-}
-- | See 'ramanujanA'.
ramanujan :: Integer -> Integer
ramanujan = runFunction ramanujanA
-- | Calculates the <https://en.wikipedia.org/wiki/Ramanujan_tau_function Ramanujan tau function>
-- of a positive number @n@, using formulas given <http://www.numbertheory.org/php/tau.html here>
ramanujanA :: ArithmeticFunction Integer Integer
ramanujanA = multiplicative $ ramanujanHelper . unPrime
ramanujanHelper :: Integer -> Word -> Integer
ramanujanHelper _ 0 = 1
ramanujanHelper 2 1 = -24
ramanujanHelper p 1 = (65 * sigmaHelper (p ^ (11 :: Int)) 1 + 691 * sigmaHelper (p ^ (5 :: Int)) 1 - 691 * 252 * 2 * sum [sigma 5 k * sigma 5 (p-k) | k <- [1..(p `quot` 2)]]) `quot` 756
ramanujanHelper p k = sum $ zipWith3 (\a b c -> a * b * c) paPowers tpPowers binomials
where pa = p ^ (11 :: Int)
tp = ramanujanHelper p 1
paPowers = iterate (* (-pa)) 1
binomials = scanl (\acc j -> acc * (k' - 2 * j) * (k' - 2 * j - 1) `quot` (k' - j) `quot` (j + 1)) 1 [0 .. k' `quot` 2 - 1]
k' = wordToInteger k
tpPowers = reverse $ take (length binomials) $ iterate (* tp^(2::Int)) (if even k then 1 else tp)
{-# INLINE ramanujanHelper #-}
-- | See 'moebiusA'.
moebius :: UniqueFactorisation n => n -> Moebius
moebius = runFunction moebiusA
-- | Calculates the Möbius function of an argument.
moebiusA :: ArithmeticFunction n Moebius
moebiusA = ArithmeticFunction (const f) id
where
f 1 = MoebiusN
f 0 = MoebiusP
f _ = MoebiusZ
-- | See 'liouvilleA'.
liouville :: (UniqueFactorisation n, Num a) => n -> a
liouville = runFunction liouvilleA
-- | Calculates the Liouville function of an argument.
liouvilleA :: Num a => ArithmeticFunction n a
liouvilleA = ArithmeticFunction (const $ Xor . odd) runXor
-- | See 'carmichaelA'.
carmichael :: (UniqueFactorisation n, Integral n) => n -> n
carmichael = runFunction carmichaelA
{-# SPECIALIZE carmichael :: Int -> Int #-}
{-# SPECIALIZE carmichael :: Word -> Word #-}
{-# SPECIALIZE carmichael :: Integer -> Integer #-}
{-# SPECIALIZE carmichael :: Natural -> Natural #-}
-- | Calculates the Carmichael function for a positive integer, that is,
-- the (smallest) exponent of the group of units in @ℤ/(n)@.
carmichaelA :: Integral n => ArithmeticFunction n n
carmichaelA = ArithmeticFunction (\p -> LCM . f (unPrime p)) getLCM
where
f 2 1 = 1
f 2 2 = 2
f 2 k = 2 ^ wordToInt (k - 2)
f p 1 = p - 1
f p 2 = (p - 1) * p
f p k = (p - 1) * p ^ wordToInt (k - 1)
-- | Create an additive function from the function on prime's powers. See examples below.
additive :: Num a => (Prime n -> Word -> a) -> ArithmeticFunction n a
additive f = ArithmeticFunction ((Sum .) . f) getSum
-- | See 'smallOmegaA'.
smallOmega :: (UniqueFactorisation n, Num a) => n -> a
smallOmega = runFunction smallOmegaA
-- | Number of distinct prime factors.
--
-- > smallOmegaA = additive (\_ _ -> 1)
smallOmegaA :: Num a => ArithmeticFunction n a
smallOmegaA = additive $ const $ const 1
-- | See 'bigOmegaA'.
bigOmega :: UniqueFactorisation n => n -> Word
bigOmega = runFunction bigOmegaA
-- | Number of prime factors, counted with multiplicity.
--
-- > bigOmegaA = additive (\_ k -> k)
bigOmegaA :: ArithmeticFunction n Word
bigOmegaA = additive $ const id
-- | See 'expMangoldtA'.
expMangoldt :: UniqueFactorisation n => n -> n
expMangoldt = runFunction expMangoldtA
-- | The exponent of von Mangoldt function. Use @log expMangoldtA@ to recover von Mangoldt function itself.
expMangoldtA :: Num n => ArithmeticFunction n n
expMangoldtA = ArithmeticFunction (const . MangoldtOne . unPrime) runMangoldt
data Mangoldt a
= MangoldtZero
| MangoldtOne a
| MangoldtMany
runMangoldt :: Num a => Mangoldt a -> a
runMangoldt m = case m of
MangoldtZero -> 1
MangoldtOne a -> a
MangoldtMany -> 1
instance Semigroup (Mangoldt a) where
MangoldtZero <> a = a
a <> MangoldtZero = a
_ <> _ = MangoldtMany
instance Monoid (Mangoldt a) where
mempty = MangoldtZero
mappend = (<>)
-- | See 'isNFreeA'.
isNFree :: UniqueFactorisation n => Word -> n -> Bool
isNFree n = runFunction (isNFreeA n)
-- | Check if an integer is @n@-free. An integer @x@ is @n@-free if in its
-- factorisation into prime factors, no factor has an exponent larger than or
-- equal to @n@.
isNFreeA :: Word -> ArithmeticFunction n Bool
isNFreeA n = ArithmeticFunction (\_ pow -> All $ pow < n) getAll
newtype LCM a = LCM { getLCM :: a }
instance Integral a => Semigroup (LCM a) where
(<>) = coerce (lcm :: a -> a -> a)
instance Integral a => Monoid (LCM a) where
mempty = LCM 1
mappend = (<>)
newtype Xor = Xor { _getXor :: Bool }
runXor :: Num a => Xor -> a
runXor m = case m of
Xor False -> 1
Xor True -> -1
instance Semigroup Xor where
(<>) = coerce ((/=) :: Bool -> Bool -> Bool)
instance Monoid Xor where
mempty = Xor False
mappend = (<>)
newtype SetProduct a = SetProduct { getSetProduct :: Set a }
instance (Num a, Ord a) => Semigroup (SetProduct a) where
SetProduct s1 <> SetProduct s2 = SetProduct $ s1 <> s2 <> foldMap (\n -> S.mapMonotonic (* n) s2) s1
instance (Num a, Ord a) => Monoid (SetProduct a) where
mempty = SetProduct mempty
mappend = (<>)
newtype ListProduct a = ListProduct { getListProduct :: [a] }
instance Num a => Semigroup (ListProduct a) where
ListProduct s1 <> ListProduct s2 = ListProduct $ s1 <> s2 <> foldMap (\n -> map (* n) s2) s1
instance Num a => Monoid (ListProduct a) where
mempty = ListProduct mempty
mappend = (<>)
-- Represent as a Reader monad
newtype BoundedSetProduct a = BoundedSetProduct { _getBoundedSetProduct :: a -> Set a }
takeWhileLE :: Ord a => a -> Set a -> Set a
takeWhileLE b xs = if m then S.insert b ls else ls
where (ls, m, _) = S.splitMember b xs
instance (Ord a, Num a) => Semigroup (BoundedSetProduct a) where
BoundedSetProduct f1 <> BoundedSetProduct f2 = BoundedSetProduct f
where f b = s1 <> s2 <> foldMap (\n -> takeWhileLE b $ S.mapMonotonic (* n) s2) s1
where s1 = f1 b
s2 = f2 b
instance (Ord a, Num a) => Monoid (BoundedSetProduct a) where
mempty = BoundedSetProduct mempty
mappend = (<>)
newtype IntSetProduct = IntSetProduct { getIntSetProduct :: IntSet }
instance Semigroup IntSetProduct where
IntSetProduct s1 <> IntSetProduct s2 = IntSetProduct $ IS.unions $ s1 : s2 : map (\n -> IS.map (* n) s2) (IS.toAscList s1)
instance Monoid IntSetProduct where
mempty = IntSetProduct mempty
mappend = (<>)
|