File: Diophantine.hs

package info (click to toggle)
haskell-arithmoi 0.13.0.0-1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 988 kB
  • sloc: haskell: 10,437; makefile: 5
file content (74 lines) | stat: -rw-r--r-- 3,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
-- Module for Diophantine Equations and related functions

module Math.NumberTheory.Diophantine
  ( cornacchiaPrimitive
  , cornacchia
  )
where

import Data.List.Infinite (Infinite(..))
import qualified Data.List.Infinite as Inf

import           Math.NumberTheory.Moduli.Sqrt  ( sqrtsModFactorisation )
import           Math.NumberTheory.Primes       ( factorise
                                                , unPrime
                                                , UniqueFactorisation
                                                )
import           Math.NumberTheory.Roots        ( integerSquareRoot )
import           Math.NumberTheory.Utils.FromIntegral

-- | See `cornacchiaPrimitive`, this is the internal algorithm implementation
-- | as described at https://en.wikipedia.org/wiki/Cornacchia%27s_algorithm 
cornacchiaPrimitive' :: Integer -> Integer -> [(Integer, Integer)]
cornacchiaPrimitive' d m = concatMap
  (findSolution . Inf.head . Inf.dropWhile (\r -> r * r >= m) . gcdSeq m)
  roots
 where
  roots :: [Integer]
  roots = filter (<= m `div` 2) $ sqrtsModFactorisation (m - d) (factorise m)

  gcdSeq :: Integer -> Integer -> Infinite Integer
  gcdSeq a b = a :< gcdSeq b (mod a b)

  -- If s = sqrt((m - r*r) / d) is an integer then (r, s) is a solution
  findSolution :: Integer -> [(Integer, Integer)]
  findSolution r = [ (r, s) | rem1 == 0 && s * s == s2 ]
   where
    (s2, rem1) = divMod (m - r * r) d
    s          = integerSquareRoot s2

-- | Finds all primitive solutions (x,y) to the diophantine equation 
-- |    x^2 + d*y^2 = m
-- | when 1 <= d < m and gcd(d,m)=1
-- | Given m is square free these are all the positive integer solutions
cornacchiaPrimitive :: Integer -> Integer -> [(Integer, Integer)]
cornacchiaPrimitive d m
  | not (1 <= d && d < m) = error "precondition failed: 1 <= d < m"
  | gcd d m /= 1          = error "precondition failed: d and m coprime"
  |
  -- If d=1 then the algorithm doesn't generate symmetrical pairs 
    d == 1                = concatMap genPairs solutions
  | otherwise             = solutions
 where
  solutions = cornacchiaPrimitive' d m
  genPairs (x, y) = if x == y then [(x, y)] else [(x, y), (y, x)]

-- Find numbers whose square is a factor of the input
squareFactors :: UniqueFactorisation a => a -> [a]
squareFactors = foldl squareProducts [1] . factorise
 where
  squareProducts acc f = [ a * b | a <- acc, b <- squarePowers f ]
  squarePowers (p, a) = map (unPrime p ^) [0 .. wordToInt a `div` 2]

-- | Finds all positive integer solutions (x,y) to the
-- | diophantine equation:
-- |    x^2 + d*y^2 = m
-- | when 1 <= d < m and gcd(d,m)=1
cornacchia :: Integer -> Integer -> [(Integer, Integer)]
cornacchia d m
  | not (1 <= d && d < m) = error "precondition failed: 1 <= d < m"
  | gcd d m /= 1 = error "precondition failed: d and m coprime"
  | otherwise = concatMap solve $ filter ((> d) . snd) candidates
 where
  candidates = map (\sf -> (sf, m `div` (sf * sf))) (squareFactors m)
  solve (sf, m') = map (\(x, y) -> (x * sf, y * sf)) (cornacchiaPrimitive d m')