File: SomeMod.hs

package info (click to toggle)
haskell-arithmoi 0.13.0.0-1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 988 kB
  • sloc: haskell: 10,437; makefile: 5
file content (199 lines) | stat: -rw-r--r-- 6,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
-- |
-- Module:      Math.NumberTheory.Moduli.SomeMod
-- Copyright:   (c) 2017 Andrew Lelechenko
-- Licence:     MIT
-- Maintainer:  Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- Safe modular arithmetic with modulo on type level.
--

{-# LANGUAGE GADTs               #-}
{-# LANGUAGE LambdaCase          #-}
{-# LANGUAGE RankNTypes          #-}
{-# LANGUAGE ScopedTypeVariables #-}

module Math.NumberTheory.Moduli.SomeMod
  ( SomeMod(..)
  , modulo
  , invertSomeMod
  , powSomeMod
  ) where

import Data.Euclidean (GcdDomain(..), Euclidean(..), Field)
import Data.Mod
import Data.Proxy
import Data.Semiring (Semiring(..), Ring(..))
import Data.Type.Equality
import GHC.TypeNats (KnownNat, SomeNat(..), sameNat, natVal, someNatVal)
import Numeric.Natural

-- | This type represents residues with unknown modulo and rational numbers.
-- One can freely combine them in arithmetic expressions, but each operation
-- will spend time on modulo's recalculation:
--
-- >>> 2 `modulo` 10 + 4 `modulo` 15
-- (1 `modulo` 5)
-- >>> (2 `modulo` 10) * (4 `modulo` 15)
-- (3 `modulo` 5)
-- >>> import Data.Ratio
-- >>> 2 `modulo` 10 + fromRational (3 % 7)
-- (1 `modulo` 10)
-- >>> 2 `modulo` 10 * fromRational (3 % 7)
-- (8 `modulo` 10)
--
-- If performance is crucial, it is recommended to extract @Mod m@ for further processing
-- by pattern matching. E. g.,
--
-- > case modulo n m of
-- >   SomeMod k -> process k -- Here k has type Mod m
-- >   InfMod{}  -> error "impossible"
data SomeMod where
  SomeMod :: KnownNat m => Mod m -> SomeMod
  InfMod  :: Rational -> SomeMod

instance Eq SomeMod where
  SomeMod mx == SomeMod my =
    natVal mx == natVal my && unMod mx == unMod my
  InfMod rx  == InfMod ry  = rx == ry
  _          == _          = False

instance Ord SomeMod where
  SomeMod mx `compare` SomeMod my =
    natVal mx `compare` natVal my <> unMod mx `compare` unMod my
  SomeMod{} `compare` InfMod{} = LT
  InfMod{} `compare` SomeMod{} = GT
  InfMod rx `compare` InfMod ry = rx `compare` ry

instance Show SomeMod where
  show = \case
    SomeMod m -> show m
    InfMod  r -> show r

-- | Create modular value by representative of residue class and modulo.
-- One can use the result either directly (via functions from 'Num' and 'Fractional'),
-- or deconstruct it by pattern matching. Note that 'modulo' never returns 'InfMod'.
modulo :: Integer -> Natural -> SomeMod
modulo n m = case someNatVal m of
  SomeNat (_ :: Proxy t) -> SomeMod (fromInteger n :: Mod t)
{-# INLINABLE modulo #-}
infixl 7 `modulo`

liftUnOp
  :: (forall k. KnownNat k => Mod k -> Mod k)
  -> (Rational -> Rational)
  -> SomeMod
  -> SomeMod
liftUnOp fm fr = \case
  SomeMod m -> SomeMod (fm m)
  InfMod  r -> InfMod  (fr r)
{-# INLINEABLE liftUnOp #-}

liftBinOpMod
  :: (KnownNat m, KnownNat n)
  => (forall k. KnownNat k => Mod k -> Mod k -> Mod k)
  -> Mod m
  -> Mod n
  -> SomeMod
liftBinOpMod f mx my = case someNatVal m of
  SomeNat (_ :: Proxy t) ->
    SomeMod (fromIntegral (x `mod` m) `f` fromIntegral (y `mod` m) :: Mod t)
  where
    x = unMod mx
    y = unMod my
    m = natVal mx `Prelude.gcd` natVal my

liftBinOp
  :: (forall k. KnownNat k => Mod k -> Mod k -> Mod k)
  -> (Rational -> Rational -> Rational)
  -> SomeMod
  -> SomeMod
  -> SomeMod
liftBinOp _ fr (InfMod rx)  (InfMod ry)  = InfMod  (rx `fr` ry)
liftBinOp fm _ (InfMod rx)  (SomeMod my) = SomeMod (fromRational rx `fm` my)
liftBinOp fm _ (SomeMod mx) (InfMod ry)  = SomeMod (mx `fm` fromRational ry)
liftBinOp fm _ (SomeMod (mx :: Mod m)) (SomeMod (my :: Mod n))
  = case (Proxy :: Proxy m) `sameNat` (Proxy :: Proxy n) of
    Nothing   -> liftBinOpMod fm mx my
    Just Refl -> SomeMod (mx `fm` my)

instance Num SomeMod where
  (+)    = liftBinOp (+) (+)
  (-)    = liftBinOp (-) (-)
  negate = liftUnOp Prelude.negate Prelude.negate
  {-# INLINE negate #-}
  (*)    = liftBinOp (*) (*)
  abs    = id
  {-# INLINE abs #-}
  signum = const 1
  {-# INLINE signum #-}
  fromInteger = InfMod . fromInteger
  {-# INLINE fromInteger #-}

instance Semiring SomeMod where
  plus  = (+)
  times = (*)
  zero  = InfMod 0
  one   = InfMod 1
  fromNatural = fromIntegral

instance Ring SomeMod where
  negate = Prelude.negate

-- | Beware that division by residue, which is not coprime with the modulo,
-- will result in runtime error. Consider using 'invertSomeMod' instead.
instance Fractional SomeMod where
  fromRational = InfMod
  {-# INLINE fromRational #-}
  recip x = case invertSomeMod x of
    Nothing -> error "recip{SomeMod}: residue is not coprime with modulo"
    Just y  -> y

-- | See the warning about division above.
instance GcdDomain SomeMod where
  divide x y = Just (x / y)
  gcd        = const $ const 1
  lcm        = const $ const 1
  coprime    = const $ const True

-- | See the warning about division above.
instance Euclidean SomeMod where
  degree      = const 0
  quotRem x y = (x / y, 0)
  quot        = (/)
  rem         = const $ const 0

-- | See the warning about division above.
instance Field SomeMod

-- | Computes the inverse value, if it exists.
--
-- >>> invertSomeMod (3 `modulo` 10) -- because 3 * 7 = 1 :: Mod 10
-- Just (7 `modulo` 10)
-- >>> invertSomeMod (4 `modulo` 10)
-- Nothing
-- >>> import Data.Ratio
-- >>> invertSomeMod (fromRational (2 % 5))
-- Just 5 % 2
invertSomeMod :: SomeMod -> Maybe SomeMod
invertSomeMod = \case
  SomeMod m -> fmap SomeMod (invertMod m)
  InfMod  r -> Just (InfMod (recip r))
{-# INLINABLE [1] invertSomeMod #-}

{-# SPECIALISE [1] powSomeMod ::
  SomeMod -> Integer -> SomeMod,
  SomeMod -> Natural -> SomeMod,
  SomeMod -> Int     -> SomeMod,
  SomeMod -> Word    -> SomeMod #-}

-- | Drop-in replacement for 'Prelude.^', with much better performance.
-- When -O is enabled, there is a rewrite rule, which specialises 'Prelude.^' to 'powSomeMod'.
--
-- >>> powSomeMod (3 `modulo` 10) 4
-- (1 `modulo` 10)
powSomeMod :: Integral a => SomeMod -> a -> SomeMod
powSomeMod (SomeMod m) a = SomeMod (m ^% a)
powSomeMod (InfMod  r) a = InfMod  (r ^  a)
{-# INLINABLE [1] powSomeMod #-}

{-# RULES "^%SomeMod" forall x p. x ^ p = powSomeMod x p #-}