File: Primes.hs

package info (click to toggle)
haskell-arithmoi 0.13.0.0-1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 988 kB
  • sloc: haskell: 10,437; makefile: 5
file content (295 lines) | stat: -rw-r--r-- 10,481 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
-- |
-- Module:      Math.NumberTheory.Primes
-- Copyright:   (c) 2016-2018 Andrew.Lelechenko
-- Licence:     MIT
-- Maintainer:  Andrew Lelechenko <andrew.lelechenko@gmail.com>
--

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase        #-}
{-# LANGUAGE PostfixOperators  #-}

{-# OPTIONS_GHC -fno-warn-orphans #-}

module Math.NumberTheory.Primes
    ( Prime
    , unPrime
    , toPrimeIntegral
    , nextPrime
    , precPrime
    , UniqueFactorisation(..)
    , factorBack
    , -- * Old interface
      primes
    ) where

import Data.Bits
import Data.Coerce
import Data.List.Infinite (Infinite(..), (...), (....))
import qualified Data.List.Infinite as Inf
import Data.Maybe
import Data.Word
import Numeric.Natural

import Math.NumberTheory.Primes.Counting (nthPrime, primeCount)
import qualified Math.NumberTheory.Primes.Factorisation.Montgomery as F (factorise)
import qualified Math.NumberTheory.Primes.Testing.Probabilistic as T (isPrime)
import Math.NumberTheory.Primes.Sieve.Eratosthenes (primes, sieveRange, primeList, psieveFrom, primeSieve)
import Math.NumberTheory.Primes.Small
import Math.NumberTheory.Primes.Types
import Math.NumberTheory.Utils (toWheel30, fromWheel30)
import Math.NumberTheory.Utils.FromIntegral

-- | A class for unique factorisation domains.
class Num a => UniqueFactorisation a where
  -- | Factorise a number into a product of prime powers.
  -- Factorisation of 0 is an undefined behaviour. Otherwise
  -- following invariants hold:
  --
  -- > abs n == abs (product (map (\(p, k) -> unPrime p ^ k) (factorise n)))
  -- > all ((> 0) . snd) (factorise n)
  --
  -- >>> factorise (1 :: Integer)
  -- []
  -- >>> factorise (-1 :: Integer)
  -- []
  -- >>> factorise (6 :: Integer)
  -- [(Prime 2,1),(Prime 3,1)]
  -- >>> factorise (-108 :: Integer)
  -- [(Prime 2,2),(Prime 3,3)]
  --
  -- This function is a replacement
  -- for 'Math.NumberTheory.Primes.Factorisation.factorise'.
  -- If you were looking for the latter, please import
  -- "Math.NumberTheory.Primes.Factorisation" instead of this module.
  --
  -- __Warning:__ there are no guarantees of any particular
  -- order of prime factors, do not expect them to be ascending. E. g.,
  --
  -- >>> factorise 10251562501
  -- [(Prime 101701,1),(Prime 100801,1)]
  factorise :: a -> [(Prime a, Word)]
  -- | Check whether an argument is prime.
  -- If it is then return an associated prime.
  --
  -- >>> isPrime (3 :: Integer)
  -- Just (Prime 3)
  -- >>> isPrime (4 :: Integer)
  -- Nothing
  -- >>> isPrime (-5 :: Integer)
  -- Just (Prime 5)
  --
  -- This function is a replacement
  -- for 'Math.NumberTheory.Primes.Testing.isPrime'.
  -- If you were looking for the latter, please import
  -- "Math.NumberTheory.Primes.Testing" instead of this module.
  isPrime   :: a -> Maybe (Prime a)

instance UniqueFactorisation Int where
  factorise = coerce . F.factorise
  isPrime n = if T.isPrime (toInteger n) then Just (Prime $ abs n) else Nothing

instance UniqueFactorisation Word where
  factorise = coerce . F.factorise
  isPrime n = if T.isPrime (toInteger n) then Just (Prime n) else Nothing

instance UniqueFactorisation Integer where
  factorise = coerce . F.factorise
  isPrime n = if T.isPrime n then Just (Prime $ abs n) else Nothing

instance UniqueFactorisation Natural where
  factorise = coerce . F.factorise
  isPrime n = if T.isPrime (toInteger n) then Just (Prime n) else Nothing

-- | Restore a number from its factorisation.
factorBack :: Num a => [(Prime a, Word)] -> a
factorBack = product . map (\(p, k) -> unPrime p ^ k)

-- | Smallest prime, greater or equal to argument.
--
-- > nextPrime (-100) ==    2
-- > nextPrime  1000  == 1009
-- > nextPrime  1009  == 1009
nextPrime :: (Bits a, Integral a, UniqueFactorisation a) => a -> Prime a
nextPrime n
  | n <= 2    = Prime 2
  | n <= 3    = Prime 3
  | n <= 5    = Prime 5
  | otherwise = Inf.head $ mapMaybeInf isPrime $
                  Inf.dropWhile (< n) $ fmap fromWheel30 (toWheel30 n ...)
                  -- dropWhile is important, because fromWheel30 (toWheel30 n) may appear to be < n.
                  -- E. g., fromWheel30 (toWheel30 94) == 97

-- | Largest prime, less or equal to argument. Undefined, when argument < 2.
--
-- > precPrime 100 == 97
-- > precPrime  97 == 97
precPrime :: (Bits a, Integral a, UniqueFactorisation a) => a -> Prime a
precPrime n
  | n < 2     = error "precPrime: tried to take `precPrime` of an argument less than 2"
  | n < 3     = Prime 2
  | n < 5     = Prime 3
  | n < 7     = Prime 5
  | otherwise = Inf.head $ mapMaybeInf isPrime $
                  Inf.dropWhile (> n) $ fmap fromWheel30 ((toWheel30 n, toWheel30 n - 1) ....)
                  -- dropWhile is important, because fromWheel30 (toWheel30 n) may appear to be > n.
                  -- E. g., fromWheel30 (toWheel30 100) == 101

mapMaybeInf :: (a -> Maybe b) -> Infinite a -> Infinite b
mapMaybeInf = Inf.foldr . (maybe id (:<) .)

-------------------------------------------------------------------------------
-- Prime sequences

data Algorithm = IsPrime | Sieve

chooseAlgorithm :: Integral a => a -> a -> Algorithm
chooseAlgorithm from to
  | to <= fromIntegral sieveRange
  && to < from + truncate (sqrt (fromIntegral from) :: Double)
  = IsPrime
  | to > fromIntegral sieveRange
  && to < from + truncate (0.036 * sqrt (fromIntegral from) + 40000 :: Double)
  = IsPrime
  | otherwise
  = Sieve

succGeneric :: (Bits a, Integral a, UniqueFactorisation a) => Prime a -> Prime a
succGeneric = \case
  Prime 2 -> Prime 3
  Prime 3 -> Prime 5
  Prime 5 -> Prime 7
  Prime p -> Inf.head $ mapMaybeInf (isPrime . fromWheel30) ((toWheel30 p + 1) ...)

succGenericBounded
  :: (Bits a, Integral a, UniqueFactorisation a, Bounded a)
  => Prime a
  -> Prime a
succGenericBounded = \case
  Prime 2 -> Prime 3
  Prime 3 -> Prime 5
  Prime 5 -> Prime 7
  Prime p -> case mapMaybe (isPrime . fromWheel30) [toWheel30 p + 1 .. toWheel30 maxBound] of
    []    -> error "Enum.succ{Prime}: tried to take `succ' near `maxBound'"
    q : _ -> q

predGeneric :: (Bits a, Integral a, UniqueFactorisation a) => Prime a -> Prime a
predGeneric = \case
  Prime 2 -> error "Enum.pred{Prime}: tried to take `pred' of 2"
  Prime 3 -> Prime 2
  Prime 5 -> Prime 3
  Prime 7 -> Prime 5
  Prime p -> Inf.head $ mapMaybeInf (isPrime . fromWheel30) ((toWheel30 p - 1, toWheel30 p - 2) ....)

-- 'dropWhile' is important, because 'psieveFrom' can actually contain primes less than p.
enumFromGeneric :: Integral a => Prime a -> [Prime a]
enumFromGeneric p@(Prime p')
  = coerce
  $ dropWhile (< p)
  $ concat
  $ takeWhile (not . null)
  $ map primeList
  $ psieveFrom
  $ toInteger p'

smallPrimesLimit :: Integral a => a
smallPrimesLimit = fromIntegral (maxBound :: Word16)

enumFromToGeneric :: (Bits a, Integral a, UniqueFactorisation a) => Prime a -> Prime a -> [Prime a]
enumFromToGeneric p@(Prime p') q@(Prime q')
  | p' <= smallPrimesLimit, q' <= smallPrimesLimit
  = map (Prime . fromIntegral) $ smallPrimesFromTo (fromIntegral p') (fromIntegral q')
  | p' <= smallPrimesLimit
  = map (Prime . fromIntegral) (smallPrimesFromTo (fromIntegral p') smallPrimesLimit)
  ++ enumFromToGeneric' (nextPrime smallPrimesLimit) q
  | otherwise
  = enumFromToGeneric' p q

enumFromToGeneric'
  :: (Bits a, Integral a, UniqueFactorisation a)
  => Prime a
  -> Prime a
  -> [Prime a]
enumFromToGeneric' p@(Prime p') q@(Prime q') = takeWhile (<= q) $ dropWhile (< p) $
  case chooseAlgorithm p' q' of
    IsPrime -> Prime 2 : Prime 3 : Prime 5 : mapMaybe (isPrime . fromWheel30) [toWheel30 p' .. toWheel30 q']
    Sieve   ->
      if q' < fromIntegral sieveRange
      then           primeList $ primeSieve $ toInteger q'
      else concatMap primeList $ psieveFrom $ toInteger p'

enumFromThenGeneric :: (Bits a, Integral a, UniqueFactorisation a) => Prime a -> Prime a -> [Prime a]
enumFromThenGeneric p@(Prime p') (Prime q') = case p' `compare` q' of
  LT -> filter (\(Prime r') -> (r' - p') `rem` delta == 0) $ enumFromGeneric p
    where
      delta = q' - p'
  EQ -> repeat p
  GT -> filter (\(Prime r') -> (p' - r') `rem` delta == 0) $ reverse $ enumFromToGeneric (Prime 2) p
    where
      delta = p' - q'

enumFromThenToGeneric :: (Bits a, Integral a, UniqueFactorisation a) => Prime a -> Prime a -> Prime a -> [Prime a]
enumFromThenToGeneric p@(Prime p') (Prime q') r@(Prime r') = case p' `compare` q' of
  LT -> filter (\(Prime t') -> (t' - p') `rem` delta == 0) $ enumFromToGeneric p r
    where
      delta = q' - p'
  EQ -> if p' <= r' then repeat p else []
  GT -> filter (\(Prime t') -> (p' - t') `rem` delta == 0) $ reverse $ enumFromToGeneric r p
    where
      delta = p' - q'

instance Enum (Prime Integer) where
  toEnum = nthPrime
  fromEnum = integerToInt . primeCount . unPrime
  succ = succGeneric
  pred = predGeneric
  enumFrom = enumFromGeneric
  enumFromTo = enumFromToGeneric
  enumFromThen = enumFromThenGeneric
  enumFromThenTo = enumFromThenToGeneric

instance Enum (Prime Natural) where
  toEnum = Prime . integerToNatural . unPrime . nthPrime
  fromEnum = integerToInt . primeCount . naturalToInteger . unPrime
  succ = succGeneric
  pred = predGeneric
  enumFrom = enumFromGeneric
  enumFromTo = enumFromToGeneric
  enumFromThen = enumFromThenGeneric
  enumFromThenTo = enumFromThenToGeneric

instance Enum (Prime Int) where
  toEnum n = if p > intToInteger maxBound
    then error $ "Enum.toEnum{Prime}: " ++ show n ++ "th prime = " ++ show p ++ " is out of bounds of Int"
    else Prime (integerToInt p)
    where
      Prime p = nthPrime n
  fromEnum = integerToInt . primeCount . intToInteger . unPrime
  succ = succGenericBounded
  pred = predGeneric
  enumFrom = enumFromGeneric
  enumFromTo = enumFromToGeneric
  enumFromThen = enumFromThenGeneric
  enumFromThenTo = enumFromThenToGeneric

instance Bounded (Prime Int) where
  minBound = Prime 2
  maxBound = precPrime maxBound

instance Enum (Prime Word) where
  toEnum n = if p > wordToInteger maxBound
    then error $ "Enum.toEnum{Prime}: " ++ show n ++ "th prime = " ++ show p ++ " is out of bounds of Word"
    else Prime (integerToWord p)
    where
      Prime p = nthPrime n
  fromEnum = integerToInt . primeCount . wordToInteger . unPrime
  succ = succGenericBounded
  pred = predGeneric
  enumFrom = enumFromGeneric
  enumFromTo = enumFromToGeneric
  enumFromThen = enumFromThenGeneric
  enumFromThenTo = enumFromThenToGeneric

instance Bounded (Prime Word) where
  minBound = Prime 2
  maxBound = precPrime maxBound