File: Impl.hs

package info (click to toggle)
haskell-arithmoi 0.13.0.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 988 kB
  • sloc: haskell: 10,437; makefile: 5
file content (498 lines) | stat: -rw-r--r-- 18,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
-- |
-- Module:      Math.NumberTheory.Primes.Counting.Impl
-- Copyright:   (c) 2011 Daniel Fischer
-- Licence:     MIT
-- Maintainer:  Daniel Fischer <daniel.is.fischer@googlemail.com>
--
-- Number of primes not exceeding @n@, @&#960;(n)@, and @n@-th prime.
--
{-# LANGUAGE BangPatterns        #-}
{-# LANGUAGE FlexibleContexts    #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -fspec-constr-count=24 #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

module Math.NumberTheory.Primes.Counting.Impl
    ( primeCount
    , primeCountMaxArg
    , nthPrime
    ) where

import Math.NumberTheory.Primes.Sieve.Eratosthenes
    (PrimeSieve(..), primeList, primeSieve, psieveFrom, sieveTo, sieveBits, sieveRange)
import Math.NumberTheory.Primes.Sieve.Indexing (toPrim, idxPr)
import Math.NumberTheory.Primes.Counting.Approximate (nthPrimeApprox, approxPrimeCount)
import Math.NumberTheory.Primes.Types
import Math.NumberTheory.Roots
import Math.NumberTheory.Utils.FromIntegral

import Control.Monad.ST
import Data.Array.Base
import Data.Array.ST
import Data.Bits
import Data.Int
import Unsafe.Coerce

-- | Maximal allowed argument of 'primeCount'. Currently 8e18.
primeCountMaxArg :: Integer
primeCountMaxArg = 8000000000000000000

-- | @'primeCount' n == &#960;(n)@ is the number of (positive) primes not exceeding @n@.
--
--   For efficiency, the calculations are done on 64-bit signed integers, therefore @n@ must
--   not exceed 'primeCountMaxArg'.
--
--   Requires @/O/(n^0.5)@ space, the time complexity is roughly @/O/(n^0.7)@.
--   For small bounds, @'primeCount' n@ simply counts the primes not exceeding @n@,
--   for bounds from @30000@ on, Meissel's algorithm is used in the improved form due to
--   D.H. Lehmer, cf.
--   <http://en.wikipedia.org/wiki/Prime_counting_function#Algorithms_for_evaluating_.CF.80.28x.29>.
primeCount :: Integer -> Integer
primeCount n
    | n > primeCountMaxArg = error $ "primeCount: can't handle bound " ++ show n
    | n < 2     = 0
    | n < 1000  = intToInteger . length . takeWhile (<= n) . map unPrime . primeList . primeSieve $ max 242 n
    | n < 30000 = runST $ do
        ba <- sieveTo n
        (s,e) <- getBounds ba
        ct <- countFromTo s e ba
        return (intToInteger $ ct+3)
    | otherwise =
        let !ub = cop $ fromInteger n
            !sr = integerSquareRoot ub
            !cr = nxtEnd $ integerCubeRoot ub + 15
            nxtEnd k = k - (k `rem` 30) + 31
            !phn1 = calc ub cr
            !cs = cr+6
            !pdf = sieveCount ub cs sr
        in phn1 - pdf

-- | @'nthPrime' n@ calculates the @n@-th prime. Numbering of primes is
--   @1@-based, so @'nthPrime' 1 == 2@.
--
--   Requires @/O/((n*log n)^0.5)@ space, the time complexity is roughly @/O/((n*log n)^0.7@.
--   The argument must be strictly positive.
nthPrime :: Int -> Prime Integer
nthPrime 1 = Prime 2
nthPrime 2 = Prime 3
nthPrime 3 = Prime 5
nthPrime 4 = Prime 7
nthPrime 5 = Prime 11
nthPrime 6 = Prime 13
nthPrime n
    | n < 1
    = error "Prime indexing starts at 1"
    | n < 200000
    = Prime $ countToNth (n - 3) [primeSieve (p0 + p0 `quot` 32 + 37)]
    | p0 > toInteger (maxBound :: Int)
    = error $ "nthPrime: index " ++ show n ++ " is too large to handle"
    | miss > 0
    = Prime $ tooLow  n (fromInteger p0) miss
    | otherwise
    = Prime $ tooHigh n (fromInteger p0) (negate miss)
      where
        p0 = nthPrimeApprox (toInteger n)
        miss = n - fromInteger (primeCount p0)

--------------------------------------------------------------------------------
--                                The Works                                   --
--------------------------------------------------------------------------------

-- TODO: do something better in case we guess too high.
-- Not too pressing, since I think a) nthPrimeApprox always underestimates
-- in the range we can handle, and b) it's always "goodEnough"

tooLow :: Int -> Int -> Int -> Integer
tooLow n p0 shortage
  | p1 > toInteger (maxBound :: Int)
  = error $ "nthPrime: index " ++ show n ++ " is too large to handle"
  | goodEnough
  = lowSieve p0 shortage
  | c1 < n
  = lowSieve (fromInteger p1) (n-c1)
  | otherwise
  = lowSieve p0 shortage   -- a third count wouldn't make it faster, I think
  where
    gap = truncate (log (intToDouble p0 :: Double))
    est = toInteger shortage * gap
    p1  = toInteger p0 + est
    goodEnough = 3*est*est*est < 2*p1*p1    -- a second counting would be more work than sieving
    c1  = fromInteger (primeCount p1)

tooHigh :: Int -> Int -> Int -> Integer
tooHigh n p0 surplus
  | c < n
  = lowSieve b (n-c)
  | otherwise
  = tooHigh n b (c-n)
  where
    gap = truncate (log (intToDouble p0 :: Double))
    b = p0 - (surplus * gap * 11) `quot` 10
    c = fromInteger (primeCount (toInteger b))

lowSieve :: Int -> Int -> Integer
lowSieve a miss = countToNth (miss+rep) psieves
      where
        strt = a + 1 + (a .&. 1)
        psieves@(PS vO ba:_) = psieveFrom (toInteger strt)
        rep | o0 < 0    = 0
            | otherwise = sum [1 | i <- [0 .. r2], ba `unsafeAt` i]
              where
                o0 = toInteger strt - vO - 9   -- (strt - 2) - v0 - 7
                r0 = fromInteger o0 `rem` 30
                r1 = r0 `quot` 3
                r2 = min 7 (if r1 > 5 then r1-1 else r1)

-- highSieve :: Integer -> Integer -> Integer -> Integer
-- highSieve a surp gap = error "Oh shit"

sieveCount :: Int64 -> Int64 -> Int64 -> Integer
sieveCount ub cr sr = runST (sieveCountST ub cr sr)

sieveCountST :: forall s. Int64 -> Int64 -> Int64 -> ST s Integer
sieveCountST ub cr sr = do
    let psieves = psieveFrom (int64ToInteger cr)
        pisr = approxPrimeCount sr
        picr = approxPrimeCount cr
        diff = pisr - picr
        size = int64ToInt (diff + diff `quot` 50) + 30
    store <- unsafeNewArray_ (0,size-1) :: ST s (STUArray s Int Int64)
    let feed :: Int64 -> Int -> Int -> UArray Int Bool -> [PrimeSieve] -> ST s Integer
        feed voff !wi !ri uar sves
          | ri == sieveBits = case sves of
                                (PS vO ba : more) -> feed (fromInteger vO) wi 0 ba more
                                _ -> error "prime stream ended prematurely"
          | pval > sr   = do
              stu <- unsafeThaw uar
              eat 0 0 voff (wi-1) ri stu sves
          | uar `unsafeAt` ri = do
              unsafeWrite store wi (ub `quot` pval)
              feed voff (wi+1) (ri+1) uar sves
          | otherwise = feed voff wi (ri+1) uar sves
            where
              pval = voff + toPrim ri
        eat :: Integer -> Integer -> Int64 -> Int -> Int -> STUArray s Int Bool -> [PrimeSieve] -> ST s Integer
        eat !acc !btw voff !wi !si stu sves
            | si == sieveBits =
                case sves of
                  [] -> error "Premature end of prime stream"
                  (PS vO ba : more) -> do
                      nstu <- unsafeThaw ba
                      eat acc btw (fromInteger vO) wi 0 nstu more
            | wi < 0    = return acc
            | otherwise = do
                qb <- unsafeRead store wi
                let dist = qb - voff - 7
                if dist < intToInt64 sieveRange
                  then do
                      let (b,j) = idxPr (dist+7)
                          !li = (b `shiftL` 3) .|. j
                      new <- if li < si then return 0 else countFromTo si li stu
                      let nbtw = btw + intToInteger new + 1
                      eat (acc+nbtw) nbtw voff (wi-1) (li+1) stu sves
                  else do
                      let (cpl,fds) = dist `quotRem` intToInt64 sieveRange
                          (b,j) = idxPr (fds+7)
                          !li = (b `shiftL` 3) .|. j
                          ctLoop !lac 0 (PS vO ba : more) = do
                              nstu <- unsafeThaw ba
                              new <- countFromTo 0 li nstu
                              let nbtw = btw + lac + 1 + intToInteger new
                              eat (acc+nbtw) nbtw (integerToInt64 vO) (wi-1) (li+1) nstu more
                          ctLoop lac s (ps : more) = do
                              let !new = countAll ps
                              ctLoop (lac + intToInteger new) (s-1) more
                          ctLoop _ _ [] = error "Primes ended"
                      new <- countFromTo si (sieveBits-1) stu
                      ctLoop (intToInteger new) (cpl-1) sves
    case psieves of
      (PS vO ba : more) -> feed (fromInteger vO) 0 0 ba more
      _ -> error "No primes sieved"

calc :: Int64 -> Int64 -> Integer
calc lim plim = runST (calcST lim plim)

calcST :: forall s. Int64 -> Int64 -> ST s Integer
calcST lim plim = do
    !parr <- sieveTo (int64ToInteger plim)
    (plo,phi) <- getBounds parr
    !pct <- countFromTo plo phi parr
    !ar1 <- unsafeNewArray_ (0,end-1)
    unsafeWrite ar1 0 lim
    unsafeWrite ar1 1 1
    !ar2 <- unsafeNewArray_ (0,end-1)
    let go :: Int -> Int -> STUArray s Int Int64 -> STUArray s Int Int64 -> ST s Integer
        go cap pix old new
            | pix == 2  =   coll cap old
            | otherwise = do
                isp <- unsafeRead parr pix
                if isp
                    then do
                        let !n = fromInteger (toPrim pix)
                        !ncap <- treat cap n old new
                        go ncap (pix-1) new old
                    else go cap (pix-1) old new
        coll :: Int -> STUArray s Int Int64 -> ST s Integer
        coll stop ar =
            let cgo !acc i
                    | i < stop  = do
                        !k <- unsafeRead ar i
                        !v <- unsafeRead ar (i+1)
                        cgo (acc + int64ToInteger v*cp6 k) (i+2)
                    | otherwise = return (acc+intToInteger pct+2)
            in cgo 0 0
    go 2 start ar1 ar2
  where
    (bt,ri) = idxPr plim
    !start = 8*bt + ri
    !size = int64ToInt $ integerSquareRoot lim `quot` 4
    !end = 2*size

treat :: Int -> Int64 -> STUArray s Int Int64 -> STUArray s Int Int64 -> ST s Int
treat end n old new = do
    qi0 <- locate n 0 (end `quot` 2 - 1) old
    let collect stop !acc ix
            | ix < end  = do
                !k <- unsafeRead old ix
                if k < stop
                    then do
                        v <- unsafeRead old (ix+1)
                        collect stop (acc-v) (ix+2)
                    else return (acc,ix)
            | otherwise = return (acc,ix)
        goTreat !wi !ci qi
            | qi < end  = do
                !key <- unsafeRead old qi
                !val <- unsafeRead old (qi+1)
                let !q0 = key `quot` n
                    !r0 = int64ToInt (q0 `rem` 30030)
                    !nkey = q0 - int8ToInt64 (cpDfAr `unsafeAt` r0)
                    nk0 = q0 + int8ToInt64 (cpGpAr `unsafeAt` (r0+1) + 1)
                    !nlim = n*nk0
                (wi1,ci1) <- copyTo end nkey old ci new wi
                ckey <- unsafeRead old ci1
                (!acc, !ci2) <- if ckey == nkey
                                  then do
                                    !ov <- unsafeRead old (ci1+1)
                                    return (ov-val,ci1+2)
                                  else return (-val,ci1)
                (!tot, !nqi) <- collect nlim acc (qi+2)
                unsafeWrite new wi1 nkey
                unsafeWrite new (wi1+1) tot
                goTreat (wi1+2) ci2 nqi
            | otherwise = copyRem end old ci new wi
    goTreat 0 0 qi0

--------------------------------------------------------------------------------
--                               Auxiliaries                                  --
--------------------------------------------------------------------------------

locate :: Int64 -> Int -> Int -> STUArray s Int Int64 -> ST s Int
locate p low high arr = do
    let go lo hi
          | lo < hi     = do
            let !md = (lo+hi) `quot` 2
            v <- unsafeRead arr (2*md)
            case compare p v of
                LT -> go lo md
                EQ -> return (2*md)
                GT -> go (md+1) hi
          | otherwise   = return (2*lo)
    go low high

{-# INLINE copyTo #-}
copyTo :: Int -> Int64 -> STUArray s Int Int64 -> Int
       -> STUArray s Int Int64 -> Int -> ST s (Int,Int)
copyTo end lim old oi new ni = do
    let go ri wi
            | ri < end  = do
                ok <- unsafeRead old ri
                if ok < lim
                    then do
                        !ov <- unsafeRead old (ri+1)
                        unsafeWrite new wi ok
                        unsafeWrite new (wi+1) ov
                        go (ri+2) (wi+2)
                    else return (wi,ri)
            | otherwise = return (wi,ri)
    go oi ni

{-# INLINE copyRem #-}
copyRem :: Int -> STUArray s Int Int64 -> Int -> STUArray s Int Int64 -> Int -> ST s Int
copyRem end old oi new ni = do
    let go ri wi
          | ri < end    = do
            unsafeRead old ri >>= unsafeWrite new wi
            go (ri+1) (wi+1)
          | otherwise   = return wi
    go oi ni

{-# INLINE cp6 #-}
cp6 :: Int64 -> Integer
cp6 k =
  case k `quotRem` 30030 of
    (q,r) -> 5760*int64ToInteger q +
                int16ToInteger (cpCtAr `unsafeAt` int64ToInt r)

cop :: Int64 -> Int64
cop m = m - int8ToInt64 (cpDfAr `unsafeAt` int64ToInt (m `rem` 30030))


--------------------------------------------------------------------------------
--                           Ugly helper arrays                               --
--------------------------------------------------------------------------------

cpCtAr :: UArray Int Int16
cpCtAr = runSTUArray $ do
    ar <- newArray (0,30029) 1
    let zilch s i
            | i < 30030 = unsafeWrite ar i 0 >> zilch s (i+s)
            | otherwise = return ()
        accumulate ct i
            | i < 30030 = do
                v <- unsafeRead ar i
                let !ct' = ct+v
                unsafeWrite ar i ct'
                accumulate ct' (i+1)
            | otherwise = return ar
    zilch 2 0
    zilch 6 3
    zilch 10 5
    zilch 14 7
    zilch 22 11
    zilch 26 13
    accumulate 1 2

cpDfAr :: UArray Int Int8
cpDfAr = runSTUArray $ do
    ar <- newArray (0,30029) 0
    let note s i
            | i < 30029 = unsafeWrite ar i 1 >> note s (i+s)
            | otherwise = return ()
        accumulate d i
            | i < 30029 = do
                v <- unsafeRead ar i
                if v == 0
                    then accumulate 2 (i+2)
                    else do unsafeWrite ar i d
                            accumulate (d+1) (i+1)
            | otherwise = return ar
    note 2 0
    note 6 3
    note 10 5
    note 14 7
    note 22 11
    note 26 13
    accumulate 2 3

cpGpAr :: UArray Int Int8
cpGpAr = runSTUArray $ do
    ar <- newArray (0,30030) 0
    unsafeWrite ar 30030 1
    let note s i
            | i < 30029 = unsafeWrite ar i 1 >> note s (i+s)
            | otherwise = return ()
        accumulate d i
            | i < 1     = return ar
            | otherwise = do
                v <- unsafeRead ar i
                if v == 0
                    then accumulate 2 (i-2)
                    else do unsafeWrite ar i d
                            accumulate (d+1) (i-1)
    note 2 0
    note 6 3
    note 10 5
    note 14 7
    note 22 11
    note 26 13
    accumulate 2 30027

-------------------------------------------------------------------------------
-- Prime counting

rMASK :: Int
rMASK = finiteBitSize (0 :: Word) - 1

wSHFT :: (Bits a, Num a) => a
wSHFT = if finiteBitSize (0 :: Word) == 64 then 6 else 5

tOPB :: Int
tOPB = finiteBitSize (0 :: Word) `shiftR` 1

tOPM :: (Bits a, Num a) => a
tOPM = (1 `shiftL` tOPB) - 1

-- find the n-th set bit in a list of PrimeSieves,
-- aka find the (n+3)-rd prime
countToNth :: Int -> [PrimeSieve] -> Integer
countToNth !_ [] = error "countToNth: Prime stream ended prematurely"
countToNth !n (PS v0 bs : more) = go n 0
  where
    wa :: UArray Int Word
    wa = unsafeCoerce bs

    go !k i
      | i == snd (bounds wa)
      = countToNth k more
      | otherwise
      = let w = unsafeAt wa i
            bc = popCount w
        in if bc < k
          then go (k-bc) (i+1)
          else let j = bc - k
                   px = top w j bc
               in v0 + toPrim (px + (i `shiftL` wSHFT))

-- count all set bits in a chunk, do it wordwise for speed.
countAll :: PrimeSieve -> Int
countAll (PS _ bs) = go 0 0
  where
    wa :: UArray Int Word
    wa = unsafeCoerce bs

    go !ct i
      | i == snd (bounds wa)
      = ct
      | otherwise
      = go (ct + popCount (unsafeAt wa i)) (i+1)

-- Find the j-th highest of bc set bits in the Word w.
top :: Word -> Int -> Int -> Int
top w j bc = go 0 tOPB tOPM bn w
    where
      !bn = bc-j
      go !_ _ !_ !_ 0 = error "Too few bits set"
      go bs 0 _ _ wd = if wd .&. 1 == 0 then error "Too few bits, shift 0" else bs
      go bs a msk ix wd =
        case popCount (wd .&. msk) of
          lc | lc < ix  -> go (bs+a) a msk (ix-lc) (wd `unsafeShiftR` a)
             | otherwise ->
               let !na = a `shiftR` 1
               in go bs na (msk `unsafeShiftR` na) ix wd

-- count set bits between two indices (inclusive)
-- start and end must both be valid indices and start <= end
countFromTo :: Int -> Int -> STUArray s Int Bool -> ST s Int
countFromTo start end ba = do
    wa <- (castSTUArray :: STUArray s Int Bool -> ST s (STUArray s Int Word)) ba
    let !sb = start `shiftR` wSHFT
        !si = start .&. rMASK
        !eb = end `shiftR` wSHFT
        !ei = end .&. rMASK
        count !acc i
            | i == eb = do
                w <- unsafeRead wa i
                return (acc + popCount (w `shiftL` (rMASK - ei)))
            | otherwise = do
                w <- unsafeRead wa i
                count (acc + popCount w) (i+1)
    if sb < eb
      then do
          w <- unsafeRead wa sb
          count (popCount (w `shiftR` si)) (sb+1)
      else do
          w <- unsafeRead wa sb
          let !w1 = w `shiftR` si
          return (popCount (w1 `shiftL` (rMASK - ei + si)))