1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
|
-- |
-- Module: Math.NumberTheory.Primes.Counting.Impl
-- Copyright: (c) 2011 Daniel Fischer
-- Licence: MIT
-- Maintainer: Daniel Fischer <daniel.is.fischer@googlemail.com>
--
-- Number of primes not exceeding @n@, @π(n)@, and @n@-th prime.
--
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -fspec-constr-count=24 #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module Math.NumberTheory.Primes.Counting.Impl
( primeCount
, primeCountMaxArg
, nthPrime
) where
import Math.NumberTheory.Primes.Sieve.Eratosthenes
(PrimeSieve(..), primeList, primeSieve, psieveFrom, sieveTo, sieveBits, sieveRange)
import Math.NumberTheory.Primes.Sieve.Indexing (toPrim, idxPr)
import Math.NumberTheory.Primes.Counting.Approximate (nthPrimeApprox, approxPrimeCount)
import Math.NumberTheory.Primes.Types
import Math.NumberTheory.Roots
import Math.NumberTheory.Utils.FromIntegral
import Control.Monad.ST
import Data.Array.Base
import Data.Array.ST
import Data.Bits
import Data.Int
import Unsafe.Coerce
-- | Maximal allowed argument of 'primeCount'. Currently 8e18.
primeCountMaxArg :: Integer
primeCountMaxArg = 8000000000000000000
-- | @'primeCount' n == π(n)@ is the number of (positive) primes not exceeding @n@.
--
-- For efficiency, the calculations are done on 64-bit signed integers, therefore @n@ must
-- not exceed 'primeCountMaxArg'.
--
-- Requires @/O/(n^0.5)@ space, the time complexity is roughly @/O/(n^0.7)@.
-- For small bounds, @'primeCount' n@ simply counts the primes not exceeding @n@,
-- for bounds from @30000@ on, Meissel's algorithm is used in the improved form due to
-- D.H. Lehmer, cf.
-- <http://en.wikipedia.org/wiki/Prime_counting_function#Algorithms_for_evaluating_.CF.80.28x.29>.
primeCount :: Integer -> Integer
primeCount n
| n > primeCountMaxArg = error $ "primeCount: can't handle bound " ++ show n
| n < 2 = 0
| n < 1000 = intToInteger . length . takeWhile (<= n) . map unPrime . primeList . primeSieve $ max 242 n
| n < 30000 = runST $ do
ba <- sieveTo n
(s,e) <- getBounds ba
ct <- countFromTo s e ba
return (intToInteger $ ct+3)
| otherwise =
let !ub = cop $ fromInteger n
!sr = integerSquareRoot ub
!cr = nxtEnd $ integerCubeRoot ub + 15
nxtEnd k = k - (k `rem` 30) + 31
!phn1 = calc ub cr
!cs = cr+6
!pdf = sieveCount ub cs sr
in phn1 - pdf
-- | @'nthPrime' n@ calculates the @n@-th prime. Numbering of primes is
-- @1@-based, so @'nthPrime' 1 == 2@.
--
-- Requires @/O/((n*log n)^0.5)@ space, the time complexity is roughly @/O/((n*log n)^0.7@.
-- The argument must be strictly positive.
nthPrime :: Int -> Prime Integer
nthPrime 1 = Prime 2
nthPrime 2 = Prime 3
nthPrime 3 = Prime 5
nthPrime 4 = Prime 7
nthPrime 5 = Prime 11
nthPrime 6 = Prime 13
nthPrime n
| n < 1
= error "Prime indexing starts at 1"
| n < 200000
= Prime $ countToNth (n - 3) [primeSieve (p0 + p0 `quot` 32 + 37)]
| p0 > toInteger (maxBound :: Int)
= error $ "nthPrime: index " ++ show n ++ " is too large to handle"
| miss > 0
= Prime $ tooLow n (fromInteger p0) miss
| otherwise
= Prime $ tooHigh n (fromInteger p0) (negate miss)
where
p0 = nthPrimeApprox (toInteger n)
miss = n - fromInteger (primeCount p0)
--------------------------------------------------------------------------------
-- The Works --
--------------------------------------------------------------------------------
-- TODO: do something better in case we guess too high.
-- Not too pressing, since I think a) nthPrimeApprox always underestimates
-- in the range we can handle, and b) it's always "goodEnough"
tooLow :: Int -> Int -> Int -> Integer
tooLow n p0 shortage
| p1 > toInteger (maxBound :: Int)
= error $ "nthPrime: index " ++ show n ++ " is too large to handle"
| goodEnough
= lowSieve p0 shortage
| c1 < n
= lowSieve (fromInteger p1) (n-c1)
| otherwise
= lowSieve p0 shortage -- a third count wouldn't make it faster, I think
where
gap = truncate (log (intToDouble p0 :: Double))
est = toInteger shortage * gap
p1 = toInteger p0 + est
goodEnough = 3*est*est*est < 2*p1*p1 -- a second counting would be more work than sieving
c1 = fromInteger (primeCount p1)
tooHigh :: Int -> Int -> Int -> Integer
tooHigh n p0 surplus
| c < n
= lowSieve b (n-c)
| otherwise
= tooHigh n b (c-n)
where
gap = truncate (log (intToDouble p0 :: Double))
b = p0 - (surplus * gap * 11) `quot` 10
c = fromInteger (primeCount (toInteger b))
lowSieve :: Int -> Int -> Integer
lowSieve a miss = countToNth (miss+rep) psieves
where
strt = a + 1 + (a .&. 1)
psieves@(PS vO ba:_) = psieveFrom (toInteger strt)
rep | o0 < 0 = 0
| otherwise = sum [1 | i <- [0 .. r2], ba `unsafeAt` i]
where
o0 = toInteger strt - vO - 9 -- (strt - 2) - v0 - 7
r0 = fromInteger o0 `rem` 30
r1 = r0 `quot` 3
r2 = min 7 (if r1 > 5 then r1-1 else r1)
-- highSieve :: Integer -> Integer -> Integer -> Integer
-- highSieve a surp gap = error "Oh shit"
sieveCount :: Int64 -> Int64 -> Int64 -> Integer
sieveCount ub cr sr = runST (sieveCountST ub cr sr)
sieveCountST :: forall s. Int64 -> Int64 -> Int64 -> ST s Integer
sieveCountST ub cr sr = do
let psieves = psieveFrom (int64ToInteger cr)
pisr = approxPrimeCount sr
picr = approxPrimeCount cr
diff = pisr - picr
size = int64ToInt (diff + diff `quot` 50) + 30
store <- unsafeNewArray_ (0,size-1) :: ST s (STUArray s Int Int64)
let feed :: Int64 -> Int -> Int -> UArray Int Bool -> [PrimeSieve] -> ST s Integer
feed voff !wi !ri uar sves
| ri == sieveBits = case sves of
(PS vO ba : more) -> feed (fromInteger vO) wi 0 ba more
_ -> error "prime stream ended prematurely"
| pval > sr = do
stu <- unsafeThaw uar
eat 0 0 voff (wi-1) ri stu sves
| uar `unsafeAt` ri = do
unsafeWrite store wi (ub `quot` pval)
feed voff (wi+1) (ri+1) uar sves
| otherwise = feed voff wi (ri+1) uar sves
where
pval = voff + toPrim ri
eat :: Integer -> Integer -> Int64 -> Int -> Int -> STUArray s Int Bool -> [PrimeSieve] -> ST s Integer
eat !acc !btw voff !wi !si stu sves
| si == sieveBits =
case sves of
[] -> error "Premature end of prime stream"
(PS vO ba : more) -> do
nstu <- unsafeThaw ba
eat acc btw (fromInteger vO) wi 0 nstu more
| wi < 0 = return acc
| otherwise = do
qb <- unsafeRead store wi
let dist = qb - voff - 7
if dist < intToInt64 sieveRange
then do
let (b,j) = idxPr (dist+7)
!li = (b `shiftL` 3) .|. j
new <- if li < si then return 0 else countFromTo si li stu
let nbtw = btw + intToInteger new + 1
eat (acc+nbtw) nbtw voff (wi-1) (li+1) stu sves
else do
let (cpl,fds) = dist `quotRem` intToInt64 sieveRange
(b,j) = idxPr (fds+7)
!li = (b `shiftL` 3) .|. j
ctLoop !lac 0 (PS vO ba : more) = do
nstu <- unsafeThaw ba
new <- countFromTo 0 li nstu
let nbtw = btw + lac + 1 + intToInteger new
eat (acc+nbtw) nbtw (integerToInt64 vO) (wi-1) (li+1) nstu more
ctLoop lac s (ps : more) = do
let !new = countAll ps
ctLoop (lac + intToInteger new) (s-1) more
ctLoop _ _ [] = error "Primes ended"
new <- countFromTo si (sieveBits-1) stu
ctLoop (intToInteger new) (cpl-1) sves
case psieves of
(PS vO ba : more) -> feed (fromInteger vO) 0 0 ba more
_ -> error "No primes sieved"
calc :: Int64 -> Int64 -> Integer
calc lim plim = runST (calcST lim plim)
calcST :: forall s. Int64 -> Int64 -> ST s Integer
calcST lim plim = do
!parr <- sieveTo (int64ToInteger plim)
(plo,phi) <- getBounds parr
!pct <- countFromTo plo phi parr
!ar1 <- unsafeNewArray_ (0,end-1)
unsafeWrite ar1 0 lim
unsafeWrite ar1 1 1
!ar2 <- unsafeNewArray_ (0,end-1)
let go :: Int -> Int -> STUArray s Int Int64 -> STUArray s Int Int64 -> ST s Integer
go cap pix old new
| pix == 2 = coll cap old
| otherwise = do
isp <- unsafeRead parr pix
if isp
then do
let !n = fromInteger (toPrim pix)
!ncap <- treat cap n old new
go ncap (pix-1) new old
else go cap (pix-1) old new
coll :: Int -> STUArray s Int Int64 -> ST s Integer
coll stop ar =
let cgo !acc i
| i < stop = do
!k <- unsafeRead ar i
!v <- unsafeRead ar (i+1)
cgo (acc + int64ToInteger v*cp6 k) (i+2)
| otherwise = return (acc+intToInteger pct+2)
in cgo 0 0
go 2 start ar1 ar2
where
(bt,ri) = idxPr plim
!start = 8*bt + ri
!size = int64ToInt $ integerSquareRoot lim `quot` 4
!end = 2*size
treat :: Int -> Int64 -> STUArray s Int Int64 -> STUArray s Int Int64 -> ST s Int
treat end n old new = do
qi0 <- locate n 0 (end `quot` 2 - 1) old
let collect stop !acc ix
| ix < end = do
!k <- unsafeRead old ix
if k < stop
then do
v <- unsafeRead old (ix+1)
collect stop (acc-v) (ix+2)
else return (acc,ix)
| otherwise = return (acc,ix)
goTreat !wi !ci qi
| qi < end = do
!key <- unsafeRead old qi
!val <- unsafeRead old (qi+1)
let !q0 = key `quot` n
!r0 = int64ToInt (q0 `rem` 30030)
!nkey = q0 - int8ToInt64 (cpDfAr `unsafeAt` r0)
nk0 = q0 + int8ToInt64 (cpGpAr `unsafeAt` (r0+1) + 1)
!nlim = n*nk0
(wi1,ci1) <- copyTo end nkey old ci new wi
ckey <- unsafeRead old ci1
(!acc, !ci2) <- if ckey == nkey
then do
!ov <- unsafeRead old (ci1+1)
return (ov-val,ci1+2)
else return (-val,ci1)
(!tot, !nqi) <- collect nlim acc (qi+2)
unsafeWrite new wi1 nkey
unsafeWrite new (wi1+1) tot
goTreat (wi1+2) ci2 nqi
| otherwise = copyRem end old ci new wi
goTreat 0 0 qi0
--------------------------------------------------------------------------------
-- Auxiliaries --
--------------------------------------------------------------------------------
locate :: Int64 -> Int -> Int -> STUArray s Int Int64 -> ST s Int
locate p low high arr = do
let go lo hi
| lo < hi = do
let !md = (lo+hi) `quot` 2
v <- unsafeRead arr (2*md)
case compare p v of
LT -> go lo md
EQ -> return (2*md)
GT -> go (md+1) hi
| otherwise = return (2*lo)
go low high
{-# INLINE copyTo #-}
copyTo :: Int -> Int64 -> STUArray s Int Int64 -> Int
-> STUArray s Int Int64 -> Int -> ST s (Int,Int)
copyTo end lim old oi new ni = do
let go ri wi
| ri < end = do
ok <- unsafeRead old ri
if ok < lim
then do
!ov <- unsafeRead old (ri+1)
unsafeWrite new wi ok
unsafeWrite new (wi+1) ov
go (ri+2) (wi+2)
else return (wi,ri)
| otherwise = return (wi,ri)
go oi ni
{-# INLINE copyRem #-}
copyRem :: Int -> STUArray s Int Int64 -> Int -> STUArray s Int Int64 -> Int -> ST s Int
copyRem end old oi new ni = do
let go ri wi
| ri < end = do
unsafeRead old ri >>= unsafeWrite new wi
go (ri+1) (wi+1)
| otherwise = return wi
go oi ni
{-# INLINE cp6 #-}
cp6 :: Int64 -> Integer
cp6 k =
case k `quotRem` 30030 of
(q,r) -> 5760*int64ToInteger q +
int16ToInteger (cpCtAr `unsafeAt` int64ToInt r)
cop :: Int64 -> Int64
cop m = m - int8ToInt64 (cpDfAr `unsafeAt` int64ToInt (m `rem` 30030))
--------------------------------------------------------------------------------
-- Ugly helper arrays --
--------------------------------------------------------------------------------
cpCtAr :: UArray Int Int16
cpCtAr = runSTUArray $ do
ar <- newArray (0,30029) 1
let zilch s i
| i < 30030 = unsafeWrite ar i 0 >> zilch s (i+s)
| otherwise = return ()
accumulate ct i
| i < 30030 = do
v <- unsafeRead ar i
let !ct' = ct+v
unsafeWrite ar i ct'
accumulate ct' (i+1)
| otherwise = return ar
zilch 2 0
zilch 6 3
zilch 10 5
zilch 14 7
zilch 22 11
zilch 26 13
accumulate 1 2
cpDfAr :: UArray Int Int8
cpDfAr = runSTUArray $ do
ar <- newArray (0,30029) 0
let note s i
| i < 30029 = unsafeWrite ar i 1 >> note s (i+s)
| otherwise = return ()
accumulate d i
| i < 30029 = do
v <- unsafeRead ar i
if v == 0
then accumulate 2 (i+2)
else do unsafeWrite ar i d
accumulate (d+1) (i+1)
| otherwise = return ar
note 2 0
note 6 3
note 10 5
note 14 7
note 22 11
note 26 13
accumulate 2 3
cpGpAr :: UArray Int Int8
cpGpAr = runSTUArray $ do
ar <- newArray (0,30030) 0
unsafeWrite ar 30030 1
let note s i
| i < 30029 = unsafeWrite ar i 1 >> note s (i+s)
| otherwise = return ()
accumulate d i
| i < 1 = return ar
| otherwise = do
v <- unsafeRead ar i
if v == 0
then accumulate 2 (i-2)
else do unsafeWrite ar i d
accumulate (d+1) (i-1)
note 2 0
note 6 3
note 10 5
note 14 7
note 22 11
note 26 13
accumulate 2 30027
-------------------------------------------------------------------------------
-- Prime counting
rMASK :: Int
rMASK = finiteBitSize (0 :: Word) - 1
wSHFT :: (Bits a, Num a) => a
wSHFT = if finiteBitSize (0 :: Word) == 64 then 6 else 5
tOPB :: Int
tOPB = finiteBitSize (0 :: Word) `shiftR` 1
tOPM :: (Bits a, Num a) => a
tOPM = (1 `shiftL` tOPB) - 1
-- find the n-th set bit in a list of PrimeSieves,
-- aka find the (n+3)-rd prime
countToNth :: Int -> [PrimeSieve] -> Integer
countToNth !_ [] = error "countToNth: Prime stream ended prematurely"
countToNth !n (PS v0 bs : more) = go n 0
where
wa :: UArray Int Word
wa = unsafeCoerce bs
go !k i
| i == snd (bounds wa)
= countToNth k more
| otherwise
= let w = unsafeAt wa i
bc = popCount w
in if bc < k
then go (k-bc) (i+1)
else let j = bc - k
px = top w j bc
in v0 + toPrim (px + (i `shiftL` wSHFT))
-- count all set bits in a chunk, do it wordwise for speed.
countAll :: PrimeSieve -> Int
countAll (PS _ bs) = go 0 0
where
wa :: UArray Int Word
wa = unsafeCoerce bs
go !ct i
| i == snd (bounds wa)
= ct
| otherwise
= go (ct + popCount (unsafeAt wa i)) (i+1)
-- Find the j-th highest of bc set bits in the Word w.
top :: Word -> Int -> Int -> Int
top w j bc = go 0 tOPB tOPM bn w
where
!bn = bc-j
go !_ _ !_ !_ 0 = error "Too few bits set"
go bs 0 _ _ wd = if wd .&. 1 == 0 then error "Too few bits, shift 0" else bs
go bs a msk ix wd =
case popCount (wd .&. msk) of
lc | lc < ix -> go (bs+a) a msk (ix-lc) (wd `unsafeShiftR` a)
| otherwise ->
let !na = a `shiftR` 1
in go bs na (msk `unsafeShiftR` na) ix wd
-- count set bits between two indices (inclusive)
-- start and end must both be valid indices and start <= end
countFromTo :: Int -> Int -> STUArray s Int Bool -> ST s Int
countFromTo start end ba = do
wa <- (castSTUArray :: STUArray s Int Bool -> ST s (STUArray s Int Word)) ba
let !sb = start `shiftR` wSHFT
!si = start .&. rMASK
!eb = end `shiftR` wSHFT
!ei = end .&. rMASK
count !acc i
| i == eb = do
w <- unsafeRead wa i
return (acc + popCount (w `shiftL` (rMASK - ei)))
| otherwise = do
w <- unsafeRead wa i
count (acc + popCount w) (i+1)
if sb < eb
then do
w <- unsafeRead wa sb
count (popCount (w `shiftR` si)) (sb+1)
else do
w <- unsafeRead wa sb
let !w1 = w `shiftR` si
return (popCount (w1 `shiftL` (rMASK - ei + si)))
|