1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
-- |
-- Module: Math.NumberTheory.Primes.IntSet
-- Copyright: (c) 2020 Andrew Lelechenko
-- Licence: MIT
-- Maintainer: Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- A newtype wrapper around 'IntSet'.
--
-- This module is intended to be imported qualified, e. g.,
--
-- > import Math.NumberTheory.Primes.IntSet (PrimeIntSet)
-- > import qualified Math.NumberTheory.Primes.IntSet as PrimeIntSet
--
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
module Math.NumberTheory.Primes.IntSet
( -- * Set type
PrimeIntSet
, unPrimeIntSet
-- * Construction
-- | Use 'Data.Monoid.mempty' to create an empty set.
, singleton
, fromList
, fromAscList
, fromDistinctAscList
-- * Insertion
, insert
-- * Deletion
, delete
-- * Query
, member
, notMember
, lookupEQ
, lookupLT
, lookupGT
, lookupLE
, lookupGE
, null
, size
, isSubsetOf
, isProperSubsetOf
, disjoint
-- * Combine
-- | Use 'Data.Semigroup.<>' for unions.
, difference
, (\\)
, symmetricDifference
, intersection
-- * Filter
, filter
, partition
, split
, splitMember
, splitLookupEQ
, splitRoot
-- * Folds
, foldr
, foldl
, foldr'
, foldl'
-- * Min/Max
, deleteMin
, deleteMax
, minView
, maxView
-- * Conversion
, toAscList
, toDescList
) where
import Prelude ((>), (/=), (==), (-), Eq, Ord, Show, Monoid, Bool, Maybe(..), Int, Word, otherwise)
import Control.DeepSeq (NFData)
import Data.Coerce (coerce)
import Data.Data (Data)
import Data.Function (on)
import Data.IntSet (IntSet)
import qualified Data.IntSet.Internal as IS
import Data.Semigroup (Semigroup)
import qualified GHC.Exts (IsList(..))
import Math.NumberTheory.Primes.Types (Prime(..))
import Math.NumberTheory.Utils.FromIntegral (wordToInt, intToWord)
import Data.Bits (Bits(..))
import Utils.Containers.Internal.BitUtil (highestBitMask)
-- | A set of 'Prime' integers.
newtype PrimeIntSet = PrimeIntSet {
-- | Convert to a set of integers.
unPrimeIntSet :: IntSet
}
deriving (Eq, Ord, Data, Show, Semigroup, Monoid, NFData)
instance GHC.Exts.IsList PrimeIntSet where
type Item PrimeIntSet = Prime Int
fromList = coerce IS.fromList
toList = coerce IS.toList
-- | Build a singleton set.
singleton :: Prime Int -> PrimeIntSet
singleton = coerce IS.singleton
-- | Build a set from a list of primes.
fromList :: [Prime Int] -> PrimeIntSet
fromList = coerce IS.fromList
-- | Build a set from an ascending list of primes
-- (the precondition is not checked).
fromAscList :: [Prime Int] -> PrimeIntSet
fromAscList = coerce IS.fromAscList
-- | Build a set from an ascending list of distinct primes
-- (the precondition is not checked).
fromDistinctAscList :: [Prime Int] -> PrimeIntSet
fromDistinctAscList = coerce IS.fromDistinctAscList
-- | Insert a prime into the set.
insert :: Prime Int -> PrimeIntSet -> PrimeIntSet
insert = coerce IS.insert
-- | Delete an integer from the set.
delete :: Int -> PrimeIntSet -> PrimeIntSet
delete = coerce IS.delete
-- | Check whether the given prime is a member of the set.
member :: Prime Int -> PrimeIntSet -> Bool
member = coerce IS.member
-- | Check whether the given prime is not a member of the set.
notMember :: Prime Int -> PrimeIntSet -> Bool
notMember = coerce IS.notMember
-- | Find a prime in the set,
-- equal to the given integer, if any exists.
lookupEQ :: Int -> PrimeIntSet -> Maybe (Prime Int)
lookupEQ x xs
| coerce member x xs = Just (Prime x)
| otherwise = Nothing
-- | Find the largest prime in the set,
-- smaller than the given integer, if any exists.
lookupLT :: Int -> PrimeIntSet -> Maybe (Prime Int)
lookupLT = coerce IS.lookupLT
-- | Find the smallest prime in the set,
-- greater than the given integer, if any exists.
lookupGT :: Int -> PrimeIntSet -> Maybe (Prime Int)
lookupGT = coerce IS.lookupGT
-- | Find the largest prime in the set,
-- smaller or equal to the given integer, if any exists.
lookupLE :: Int -> PrimeIntSet -> Maybe (Prime Int)
lookupLE = coerce IS.lookupLE
-- | Find the smallest prime in the set,
-- greater or equal to the given integer, if any exists.
lookupGE :: Int -> PrimeIntSet -> Maybe (Prime Int)
lookupGE = coerce IS.lookupGE
-- | Check whether the set is empty.
null :: PrimeIntSet -> Bool
null = coerce IS.null
-- | Cardinality of the set.
size :: PrimeIntSet -> Int
size = coerce IS.size
-- | Check whether the first argument is a subset of the second one.
isSubsetOf :: PrimeIntSet -> PrimeIntSet -> Bool
isSubsetOf = coerce IS.isSubsetOf
-- | Check whether the first argument is a proper subset of the second one.
isProperSubsetOf :: PrimeIntSet -> PrimeIntSet -> Bool
isProperSubsetOf = coerce IS.isProperSubsetOf
-- | Check whether two sets are disjoint.
disjoint :: PrimeIntSet -> PrimeIntSet -> Bool
disjoint = coerce IS.disjoint
-- | Difference between a set of primes and a set of integers.
difference :: PrimeIntSet -> IntSet -> PrimeIntSet
difference = coerce IS.difference
-- | An alias to 'difference'.
(\\) :: PrimeIntSet -> IntSet -> PrimeIntSet
(\\) = coerce (IS.\\)
infixl 9 \\{- -}
-- | Symmetric difference of two sets of primes.
symmetricDifference :: PrimeIntSet -> PrimeIntSet -> PrimeIntSet
symmetricDifference = coerce symmDiff
-- | Intersection of a set of primes and a set of integers.
intersection :: PrimeIntSet -> IntSet -> PrimeIntSet
intersection = coerce IS.intersection
-- | Filter primes satisfying a predicate.
filter :: (Prime Int -> Bool) -> PrimeIntSet -> PrimeIntSet
filter = coerce IS.filter
-- | Partition primes according to a predicate.
partition :: (Prime Int -> Bool) -> PrimeIntSet -> (PrimeIntSet, PrimeIntSet)
partition = coerce IS.partition
-- | Split into primes strictly less and strictly greater
-- than the first argument.
split :: Int -> PrimeIntSet -> (PrimeIntSet, PrimeIntSet)
split = coerce IS.split
-- | Simultaneous 'split' and 'member'.
splitMember :: Prime Int -> PrimeIntSet -> (PrimeIntSet, Bool, PrimeIntSet)
splitMember = coerce IS.splitMember
-- | Simultaneous 'split' and 'lookupEQ'.
splitLookupEQ :: Int -> PrimeIntSet -> (PrimeIntSet, Maybe (Prime Int), PrimeIntSet)
splitLookupEQ x xs = (lt, if eq then Just (Prime x) else Nothing, gt)
where
(lt, eq, gt) = coerce IS.splitMember x xs
-- | Decompose a set into pieces based on the structure of the underlying tree.
splitRoot :: PrimeIntSet -> [PrimeIntSet]
splitRoot = coerce IS.splitRoot
-- | Fold a set using the given right-associative operator.
foldr :: forall b. (Prime Int -> b -> b) -> b -> PrimeIntSet -> b
foldr = coerce (IS.foldr @b)
-- | Fold a set using the given left-associative operator.
foldl :: forall a. (a -> Prime Int -> a) -> a -> PrimeIntSet -> a
foldl = coerce (IS.foldl @a)
-- | A strict version of 'foldr'.
foldr' :: forall b. (Prime Int -> b -> b) -> b -> PrimeIntSet -> b
foldr' = coerce (IS.foldr' @b)
-- | A strict version of 'foldl'.
foldl' :: forall a. (a -> Prime Int -> a) -> a -> PrimeIntSet -> a
foldl' = coerce (IS.foldl' @a)
-- | Delete the smallest prime in the set.
deleteMin :: PrimeIntSet -> PrimeIntSet
deleteMin = coerce IS.deleteMin
-- | Delete the largest prime in the set.
deleteMax :: PrimeIntSet -> PrimeIntSet
deleteMax = coerce IS.deleteMax
-- | Split a set into the smallest prime and the rest, if non-empty.
minView :: PrimeIntSet -> Maybe (Prime Int, PrimeIntSet)
minView = coerce IS.minView
-- | Split a set into the largest prime and the rest, if non-empty.
maxView :: PrimeIntSet -> Maybe (Prime Int, PrimeIntSet)
maxView = coerce IS.maxView
-- | Convert the set to a list of ascending primes.
toAscList :: PrimeIntSet -> [Prime Int]
toAscList = coerce IS.toAscList
-- | Convert the set to a list of descending primes.
toDescList :: PrimeIntSet -> [Prime Int]
toDescList = coerce IS.toDescList
-------------------------------------------------------------------------------
-- IntSet helpers
-- | Symmetric difference of two sets.
-- Implementation is inspired by 'Data.IntSet.union'
-- and 'Data.IntSet.difference'.
symmDiff :: IntSet -> IntSet -> IntSet
symmDiff t1 t2 = case t1 of
IS.Bin p1 m1 l1 r1 -> case t2 of
IS.Bin p2 m2 l2 r2
| shorter m1 m2 -> symmDiff1
| shorter m2 m1 -> symmDiff2
| p1 == p2 -> bin p1 m1 (symmDiff l1 l2) (symmDiff r1 r2)
| otherwise -> link p1 t1 p2 t2
where
symmDiff1
| mask p2 m1 /= p1 = link p1 t1 p2 t2
| p2 .&. m1 == 0 = bin p1 m1 (symmDiff l1 t2) r1
| otherwise = bin p1 m1 l1 (symmDiff r1 t2)
symmDiff2
| mask p1 m2 /= p2 = link p1 t1 p2 t2
| p1 .&. m2 == 0 = bin p2 m2 (symmDiff t1 l2) r2
| otherwise = bin p2 m2 l2 (symmDiff t1 r2)
IS.Tip kx bm -> symmDiffBM kx bm t1
IS.Nil -> t1
IS.Tip kx bm -> symmDiffBM kx bm t2
IS.Nil -> t2
shorter :: Int -> Int -> Bool
shorter = (>) `on` intToWord
symmDiffBM :: Int -> Word -> IntSet -> IntSet
symmDiffBM !kx !bm t = case t of
IS.Bin p m l r
| mask kx m /= p -> link kx (IS.Tip kx bm) p t
| kx .&. m == 0 -> bin p m (symmDiffBM kx bm l) r
| otherwise -> bin p m l (symmDiffBM kx bm r)
IS.Tip kx' bm'
| kx' == kx -> if bm' == bm then IS.Nil else IS.Tip kx (bm' `xor` bm)
| otherwise -> link kx (IS.Tip kx bm) kx' t
IS.Nil -> IS.Tip kx bm
link :: Int -> IntSet -> Int -> IntSet -> IntSet
link p1 t1 p2 t2
| p1 .&. m == 0 = IS.Bin p m t1 t2
| otherwise = IS.Bin p m t2 t1
where
m = wordToInt (highestBitMask (intToWord p1 `xor` intToWord p2))
p = mask p1 m
{-# INLINE link #-}
bin :: Int -> Int -> IntSet -> IntSet -> IntSet
bin p m l r = case r of
IS.Nil -> l
_ -> case l of
IS.Nil -> r
_ -> IS.Bin p m l r
{-# INLINE bin #-}
mask :: Int -> Int -> Int
mask i m = i .&. (complement (m - 1) `xor` m)
{-# INLINE mask #-}
|