1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
-- |
-- Module: Math.NumberTheory.GaussianIntegers
-- Copyright: (c) 2016 Chris Fredrickson, Google Inc.
-- Licence: MIT
-- Maintainer: Chris Fredrickson <chris.p.fredrickson@gmail.com>
--
-- This module exports functions for manipulating Gaussian integers, including
-- computing their prime factorisations.
--
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE PostfixOperators #-}
{-# LANGUAGE TypeFamilies #-}
module Math.NumberTheory.Quadratic.GaussianIntegers (
GaussianInteger(..),
ι,
conjugate,
norm,
primes,
findPrime,
) where
import Prelude hiding (quot, quotRem)
import Control.DeepSeq (NFData)
import Data.Coerce
import Data.Euclidean
import Data.List (mapAccumL)
import Data.List.Infinite (Infinite(..), (...))
import qualified Data.List.Infinite as Inf
import Data.List.NonEmpty (NonEmpty(..))
import Data.Maybe
import Data.Ord (comparing)
import qualified Data.Semiring as S
import GHC.Generics
import Math.NumberTheory.Moduli.Sqrt
import Math.NumberTheory.Roots (integerSquareRoot)
import Math.NumberTheory.Primes.Types
import qualified Math.NumberTheory.Primes as U
import Math.NumberTheory.Utils (mergeBy)
import Math.NumberTheory.Utils.FromIntegral
infix 6 :+
-- |A Gaussian integer is a+bi, where a and b are both integers.
data GaussianInteger = (:+) { real :: !Integer, imag :: !Integer }
deriving (Eq, Ord, Generic)
instance NFData GaussianInteger
-- |The imaginary unit, where
--
-- > ι .^ 2 == -1
ι :: GaussianInteger
ι = 0 :+ 1
instance Show GaussianInteger where
show (a :+ b)
| b == 0 = show a
| a == 0 = s ++ b'
| otherwise = show a ++ op ++ b'
where
b' = if abs b == 1 then "ι" else show (abs b) ++ "*ι"
op = if b > 0 then "+" else "-"
s = if b > 0 then "" else "-"
instance Num GaussianInteger where
(+) (a :+ b) (c :+ d) = (a + c) :+ (b + d)
(*) (a :+ b) (c :+ d) = (a * c - b * d) :+ (a * d + b * c)
abs = fst . absSignum
negate (a :+ b) = (-a) :+ (-b)
fromInteger n = n :+ 0
signum = snd . absSignum
instance S.Semiring GaussianInteger where
plus = (+)
times = (*)
zero = 0 :+ 0
one = 1 :+ 0
fromNatural n = naturalToInteger n :+ 0
instance S.Ring GaussianInteger where
negate = negate
absSignum :: GaussianInteger -> (GaussianInteger, GaussianInteger)
absSignum 0 = (0, 0)
absSignum z@(a :+ b)
-- first quadrant: (0, inf) x [0, inf)i
| a > 0 && b >= 0 = (z, 1)
-- second quadrant: (-inf, 0] x (0, inf)i
| a <= 0 && b > 0 = (b :+ (-a), ι)
-- third quadrant: (-inf, 0) x (-inf, 0]i
| a < 0 && b <= 0 = (-z, -1)
-- fourth quadrant: [0, inf) x (-inf, 0)i
| otherwise = ((-b) :+ a, -ι)
instance GcdDomain GaussianInteger
instance Euclidean GaussianInteger where
degree = fromInteger . norm
quotRem x (d :+ 0) = quotRemInt x d
quotRem x y = (q, x - q * y)
where
(q, _) = quotRemInt (x * conjugate y) (norm y)
quotRemInt :: GaussianInteger -> Integer -> (GaussianInteger, GaussianInteger)
quotRemInt z 1 = ( z, 0)
quotRemInt z (-1) = (-z, 0)
quotRemInt (a :+ b) c = (qa :+ qb, (ra - bumpA) :+ (rb - bumpB))
where
halfC = abs c `quot` 2
bumpA = signum a * halfC
bumpB = signum b * halfC
(qa, ra) = (a + bumpA) `quotRem` c
(qb, rb) = (b + bumpB) `quotRem` c
-- |Conjugate a Gaussian integer.
conjugate :: GaussianInteger -> GaussianInteger
conjugate (r :+ i) = r :+ (-i)
-- |The square of the magnitude of a Gaussian integer.
norm :: GaussianInteger -> Integer
norm (x :+ y) = x * x + y * y
-- |Compute whether a given Gaussian integer is prime.
isPrime :: GaussianInteger -> Bool
isPrime g@(x :+ y)
| x == 0 && y /= 0 = abs y `mod` 4 == 3 && isJust (U.isPrime y)
| y == 0 && x /= 0 = abs x `mod` 4 == 3 && isJust (U.isPrime x)
| otherwise = isJust $ U.isPrime $ norm g
-- |An infinite list of the Gaussian primes. Uses primes in Z to exhaustively
-- generate all Gaussian primes (up to associates), in order of ascending
-- magnitude.
--
-- >>> take 10 primes
-- [Prime 1+ι,Prime 2+ι,Prime 1+2*ι,Prime 3,Prime 3+2*ι,Prime 2+3*ι,Prime 4+ι,Prime 1+4*ι,Prime 5+2*ι,Prime 2+5*ι]
primes :: Infinite (U.Prime GaussianInteger)
primes = coerce $ (1 :+ 1) :< mergeBy (comparing norm) l r
where
leftPrimes, rightPrimes :: Infinite (Prime Integer)
(leftPrimes, rightPrimes) = Inf.partition (\p -> unPrime p `mod` 4 == 3) (U.nextPrime 3 ...)
l :: Infinite (GaussianInteger)
l = fmap (\p -> unPrime p :+ 0) leftPrimes
r :: Infinite (GaussianInteger)
r = Inf.concatMap
(\p -> let x :+ y = unPrime (findPrime p) in (x :+ y) :| [y :+ x])
rightPrimes
-- |Find a Gaussian integer whose norm is the given prime number
-- of form 4k + 1 using
-- <http://www.ams.org/journals/mcom/1972-26-120/S0025-5718-1972-0314745-6/S0025-5718-1972-0314745-6.pdf Hermite-Serret algorithm>.
--
-- >>> import Math.NumberTheory.Primes (nextPrime)
-- >>> findPrime (nextPrime 5)
-- Prime 2+ι
findPrime :: Prime Integer -> U.Prime GaussianInteger
findPrime p = case sqrtsModPrime (-1) p of
[] -> error "findPrime: an argument must be prime p = 4k + 1"
z : _ -> Prime $ go (unPrime p) z -- Effectively we calculate gcdG' (p :+ 0) (z :+ 1)
where
sqrtp :: Integer
sqrtp = integerSquareRoot (unPrime p)
go :: Integer -> Integer -> GaussianInteger
go g h
| g <= sqrtp = g :+ h
| otherwise = go h (g `mod` h)
-- | Compute the prime factorisation of a Gaussian integer. This is unique up to units (+/- 1, +/- i).
-- Unit factors are not included in the result.
factorise :: GaussianInteger -> [(Prime GaussianInteger, Word)]
factorise g = concat $ snd $ mapAccumL go g (U.factorise $ norm g)
where
go :: GaussianInteger -> (Prime Integer, Word) -> (GaussianInteger, [(Prime GaussianInteger, Word)])
go z (Prime 2, e) = (divideByTwo z, [(Prime (1 :+ 1), e)])
go z (p, e)
| unPrime p `mod` 4 == 3
= let e' = e `quot` 2 in (z `quotI` (unPrime p ^ e'), [(Prime (unPrime p :+ 0), e')])
| otherwise
= (z', filter ((> 0) . snd) [(gp, k), (gp', k')])
where
gp = findPrime p
(k, k', z') = divideByPrime gp (unPrime p) e z
gp' = Prime (abs (conjugate (unPrime gp)))
-- | Remove all (1:+1) factors from the argument,
-- avoiding complex division.
divideByTwo :: GaussianInteger -> GaussianInteger
divideByTwo z@(x :+ y)
| even x, even y
= divideByTwo $ z `quotI` 2
| odd x, odd y
= (x - y) `quot` 2 :+ (x + y) `quot` 2
| otherwise
= z
-- | Remove p and conj p factors from the argument,
-- avoiding complex division.
divideByPrime
:: Prime GaussianInteger -- ^ Gaussian prime p
-> Integer -- ^ Precomputed norm of p, of form 4k + 1
-> Word -- ^ Expected number of factors (either p or conj p)
-- in Gaussian integer z
-> GaussianInteger -- ^ Gaussian integer z
-> ( Word -- Multiplicity of factor p in z
, Word -- Multiplicity of factor conj p in z
, GaussianInteger -- Remaining Gaussian integer
)
divideByPrime p np k = go k 0
where
go :: Word -> Word -> GaussianInteger -> (Word, Word, GaussianInteger)
go 0 d z = (d, d, z)
go c d z
| c >= 2
, Just z' <- z `quotEvenI` np
= go (c - 2) (d + 1) z'
go c d z = (d + d1, d + d2, z'')
where
(d1, z') = go1 c 0 z
d2 = c - d1
z'' = iterate (\g -> fromMaybe err $ (g * unPrime p) `quotEvenI` np) z' !! wordToInt d2
go1 :: Word -> Word -> GaussianInteger -> (Word, GaussianInteger)
go1 0 d z = (d, z)
go1 c d z
| Just z' <- (z * conjugate (unPrime p)) `quotEvenI` np
= go1 (c - 1) (d + 1) z'
| otherwise
= (d, z)
err = error $ "divideByPrime: malformed arguments" ++ show (p, np, k)
quotI :: GaussianInteger -> Integer -> GaussianInteger
quotI (x :+ y) n = x `quot` n :+ y `quot` n
quotEvenI :: GaussianInteger -> Integer -> Maybe GaussianInteger
quotEvenI (x :+ y) n
| xr == 0
, yr == 0
= Just (xq :+ yq)
| otherwise
= Nothing
where
(xq, xr) = x `quotRem` n
(yq, yr) = y `quotRem` n
-------------------------------------------------------------------------------
instance U.UniqueFactorisation GaussianInteger where
factorise 0 = []
factorise g = coerce $ factorise g
isPrime g = if isPrime g then Just (Prime g) else Nothing
|