File: Utils.hs

package info (click to toggle)
haskell-arithmoi 0.13.0.0-1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 988 kB
  • sloc: haskell: 10,437; makefile: 5
file content (223 lines) | stat: -rw-r--r-- 7,920 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
-- |
-- Module:      Math.NumberTheory.Utils
-- Copyright:   (c) 2011 Daniel Fischer
-- Licence:     MIT
-- Maintainer:  Daniel Fischer <daniel.is.fischer@googlemail.com>
--
-- Some utilities, mostly for bit twiddling.
--

{-# LANGUAGE BangPatterns   #-}
{-# LANGUAGE MagicHash      #-}
{-# LANGUAGE UnboxedTuples  #-}
{-# LANGUAGE RankNTypes     #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DataKinds      #-}
{-# LANGUAGE GADTs          #-}

module Math.NumberTheory.Utils
    ( SomeKnown(..)
    , shiftToOddCount
    , shiftToOdd
    , shiftToOdd#
    , shiftToOddCount#
    , shiftToOddCountBigNat
    , splitOff
    , splitOff#

    , mergeBy

    , recipMod

    , toWheel30
    , fromWheel30
    , withSomeKnown
    , intVal
    ) where

import Prelude hiding (mod, quotRem)
import qualified Prelude as P

import Data.Bits
import Data.Euclidean
import Data.List.Infinite (Infinite(..))
import Data.Semiring (Semiring(..), isZero)
import GHC.Base
import GHC.Num.BigNat
import GHC.Num.Integer
import GHC.Num.Natural
import qualified Math.NumberTheory.Utils.FromIntegral as UT
import GHC.Natural
import GHC.TypeNats
import Math.NumberTheory.Utils.FromIntegral (intToWord)

-- | Remove factors of @2@ and count them. If
--   @n = 2^k*m@ with @m@ odd, the result is @(k, m)@.
--   Precondition: argument not @0@ (not checked).
{-# RULES
"shiftToOddCount/Int"       shiftToOddCount = shiftOCInt
"shiftToOddCount/Word"      shiftToOddCount = shiftOCWord
"shiftToOddCount/Integer"   shiftToOddCount = shiftOCInteger
"shiftToOddCount/Natural"   shiftToOddCount = shiftOCNatural
  #-}
{-# INLINE [1] shiftToOddCount #-}
shiftToOddCount :: Integral a => a -> (Word, a)
shiftToOddCount n = case shiftOCInteger (toInteger n) of
                      (z, o) -> (z, fromInteger o)

-- | Specialised version for @'Word'@.
--   Precondition: argument strictly positive (not checked).
shiftOCWord :: Word -> (Word, Word)
shiftOCWord (W# w#) = case shiftToOddCount# w# of
                        (# z# , u# #) -> (W# z#, W# u#)

-- | Specialised version for @'Int'@.
--   Precondition: argument nonzero (not checked).
shiftOCInt :: Int -> (Word, Int)
shiftOCInt (I# i#) = case shiftToOddCount# (int2Word# i#) of
                        (# z#, u# #) -> (W# z#, I# (word2Int# u#))

-- | Specialised version for @'Integer'@.
--   Precondition: argument nonzero (not checked).
shiftOCInteger :: Integer -> (Word, Integer)
shiftOCInteger n@(IS i#) =
    case shiftToOddCount# (int2Word# i#) of
      (# 0##, _ #) -> (0, n)
      (# z#, w# #) -> (W# z#, integerFromWord# w#)
shiftOCInteger n@(IP bn#) = case bigNatZeroCount bn# of
                                 0## -> (0, n)
                                 z#  -> (W# z#, integerFromBigNat# (bn# `bigNatShiftR#` z#))
shiftOCInteger n@(IN bn#) = case bigNatZeroCount bn# of
                                 0## -> (0, n)
                                 z#  -> (W# z#, integerFromBigNatNeg# (bn# `bigNatShiftR#` z#))

-- | Specialised version for @'Natural'@.
--   Precondition: argument nonzero (not checked).
shiftOCNatural :: Natural -> (Word, Natural)
shiftOCNatural n@(NatS# i#) =
    case shiftToOddCount# i# of
      (# 0##, _ #) -> (0, n)
      (# z#, w# #) -> (W# z#, NatS# w#)
shiftOCNatural n@(NatJ# (BN# bn#)) = case bigNatZeroCount bn# of
                                 0## -> (0, n)
                                 z#  -> (W# z#, naturalFromBigNat# (bn# `bigNatShiftR#` z#))

shiftToOddCountBigNat :: BigNat# -> (# Word, BigNat# #)
shiftToOddCountBigNat bn# = case bigNatZeroCount bn# of
  0## -> (# 0, bn# #)
  z#  -> (# W# z#, bn# `bigNatShiftR#` z# #)

-- | Count trailing zeros in a @'BigNat'@.
--   Precondition: argument nonzero (not checked, Integer invariant).
bigNatZeroCount :: BigNat# -> Word#
bigNatZeroCount bn# = count 0## 0#
  where
    !(W# bitSize#) = intToWord (finiteBitSize (0 :: Word))
    count a# i# =
          case bigNatIndex# bn# i# of
            0## -> count (a# `plusWord#` bitSize#) (i# +# 1#)
            w#  -> a# `plusWord#` ctz# w#

-- | Remove factors of @2@. If @n = 2^k*m@ with @m@ odd, the result is @m@.
--   Precondition: argument not @0@ (not checked).
{-# RULES
"shiftToOdd/Int"       shiftToOdd = shiftOInt
"shiftToOdd/Word"      shiftToOdd = shiftOWord
"shiftToOdd/Integer"   shiftToOdd = shiftOInteger
  #-}
{-# INLINE [1] shiftToOdd #-}
shiftToOdd :: Integral a => a -> a
shiftToOdd n = fromInteger (shiftOInteger (toInteger n))

-- | Specialised version for @'Int'@.
--   Precondition: argument nonzero (not checked).
shiftOInt :: Int -> Int
shiftOInt (I# i#) = I# (word2Int# (shiftToOdd# (int2Word# i#)))

-- | Specialised version for @'Word'@.
--   Precondition: argument nonzero (not checked).
shiftOWord :: Word -> Word
shiftOWord (W# w#) = W# (shiftToOdd# w#)

-- | Specialised version for @'Int'@.
--   Precondition: argument nonzero (not checked).
shiftOInteger :: Integer -> Integer
shiftOInteger (IS i#) = integerFromWord# (shiftToOdd# (int2Word# i#))
shiftOInteger n@(IP bn#) = case bigNatZeroCount bn# of
                                 0## -> n
                                 z#  -> integerFromBigNat# (bn# `bigNatShiftR#` z#)
shiftOInteger n@(IN bn#) = case bigNatZeroCount bn# of
                                 0## -> n
                                 z#  -> integerFromBigNatNeg# (bn# `bigNatShiftR#` z#)

-- | Shift argument right until the result is odd.
--   Precondition: argument not @0@, not checked.
shiftToOdd# :: Word# -> Word#
shiftToOdd# w# = uncheckedShiftRL# w# (word2Int# (ctz# w#))

-- | Like @'shiftToOdd#'@, but count the number of places to shift too.
shiftToOddCount# :: Word# -> (# Word#, Word# #)
shiftToOddCount# w# = case ctz# w# of
                        k# -> (# k#, uncheckedShiftRL# w# (word2Int# k#) #)

splitOff :: (Eq a, GcdDomain a) => a -> a -> (Word, a)
splitOff p n
  | isZero n  = (0, zero) -- prevent infinite loop
  | otherwise = go 0 n
  where
    go !k m = case m `divide` p of
      Just q -> go (k + 1) q
      _      -> (k, m)
{-# INLINABLE splitOff #-}

-- | It is difficult to convince GHC to unbox output of 'splitOff' and 'splitOff.go',
-- so we fallback to a specialized unboxed version to minimize allocations.
splitOff# :: Word# -> Word# -> (# Word#, Word# #)
splitOff# _ 0## = (# 0##, 0## #)
splitOff# p n = go 0## n
  where
    go k m = case m `quotRemWord#` p of
      (# q, 0## #) -> go (k `plusWord#` 1##) q
      _            -> (# k, m #)
{-# INLINABLE splitOff# #-}

-- | Merges two ordered lists into an ordered list. Checks for neither its
-- precondition or postcondition.
mergeBy :: (a -> a -> Ordering) -> Infinite a -> Infinite a -> Infinite a
mergeBy cmp = loop
  where
    loop ( x:< xs) (y :< ys)
      = case cmp x y of
         GT -> y :< loop (x :< xs) ys
         _  -> x :< loop xs (y :< ys)

-- | Work around https://ghc.haskell.org/trac/ghc/ticket/14085
recipMod :: Integer -> Integer -> Maybe Integer
recipMod x m = case integerRecipMod# (x `P.mod` m) (fromInteger m) of
  (# | _ #) -> Nothing
  (# y | #) -> Just (toInteger y)

-------------------------------------------------------------------------------
-- Helpers for mapping to rough numbers and back.
-- Copypasted from Data.BitStream.WheelMapping

toWheel30 :: (Integral a, Bits a) => a -> a
toWheel30 i = q `shiftL` 3 + (r + r `shiftR` 4) `shiftR` 2
  where
    (q, r) = i `P.quotRem` 30

fromWheel30 :: (Num a, Bits a) => a -> a
fromWheel30 i = ((i `shiftL` 2 - i `shiftR` 2) .|. 1)
              + ((i `shiftL` 1 - i `shiftR` 1) .&. 2)

-------------------------------------------------------------------------------
-- Helpers for dealing with data types parametrised by natural numbers.

data SomeKnown (f :: Nat -> Type) where
  SomeKnown :: KnownNat k => f k -> SomeKnown f

withSomeKnown :: (forall k. KnownNat k => f k -> a) -> SomeKnown f -> a
withSomeKnown f (SomeKnown x) = f x

intVal :: KnownNat k => a k -> Int
intVal = UT.naturalToInt . natVal