File: ArithmeticFunctionsTests.hs

package info (click to toggle)
haskell-arithmoi 0.13.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 964 kB
  • sloc: haskell: 10,379; makefile: 3
file content (386 lines) | stat: -rw-r--r-- 17,832 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
-- |
-- Module:      Math.NumberTheory.ArithmeticFunctionsTests
-- Copyright:   (c) 2016 Andrew Lelechenko
-- Licence:     MIT
-- Maintainer:  Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- Tests for Math.NumberTheory.ArithmeticFunctions
--

{-# OPTIONS_GHC -fno-warn-type-defaults #-}

module Math.NumberTheory.ArithmeticFunctionsTests
  ( testSuite
  ) where

import Test.Tasty
import Test.Tasty.HUnit

import Data.List (sort)
import qualified Data.List.Infinite as Inf
import qualified Data.Set as S
import qualified Data.IntSet as IS

import Math.NumberTheory.ArithmeticFunctions
import Math.NumberTheory.Primes (UniqueFactorisation (factorise))
import Math.NumberTheory.TestUtils
import Math.NumberTheory.Zeta (zetas)

import Numeric.Natural

oeisAssertion :: (Eq a, Show a) => String -> ArithmeticFunction Natural a -> [a] -> Assertion
oeisAssertion name f baseline = assertEqual name baseline (map (runFunction f) [1 .. fromIntegral (length baseline)])

wolframAlphaAssertion :: (Eq a, Show a) => String -> ArithmeticFunction Integer a -> [Integer] -> [a] -> Assertion
wolframAlphaAssertion name f domain baseline = assertEqual name baseline (map (runFunction f) domain)

-- | tau(n) equals to a number of divisors.
divisorsProperty1 :: NonZero Natural -> Bool
divisorsProperty1 (NonZero n) = S.size (runFunction divisorsA n) == runFunction tauA n

-- | sigma(n) equals to a number of divisors.
divisorsProperty2 :: NonZero Natural -> Bool
divisorsProperty2 (NonZero n) = sum (runFunction divisorsA n) == runFunction (sigmaA 1) n

-- | All divisors of n truly divides n.
divisorsProperty3 :: NonZero Natural -> Bool
divisorsProperty3 (NonZero n) = all (\d -> n `rem` d == 0) (runFunction divisorsA n)

-- | 'divisorsA' matches 'divisorsSmallA'
divisorsProperty4 :: NonZero Int -> Bool
divisorsProperty4 (NonZero n) = S.toAscList (runFunction divisorsA n) == IS.toAscList (runFunction divisorsSmallA n)

-- | 'divisorsA' matches 'divisorsListA'
divisorsProperty5 :: NonZero Int -> Bool
divisorsProperty5 (NonZero n) = S.toAscList (runFunction divisorsA n) == sort (runFunction divisorsListA n)

-- | 'divisorsTo' matches 'divisorsA' with a filter
divisorsProperty6 :: Positive Int -> NonNegative Int -> Bool
divisorsProperty6 (Positive a) (NonNegative b) = runFunction (divisorsToA to) n == expected
  where to = a
        n = to + b
        expected = S.filter (<=to) (runFunction divisorsA n)

-- | tau matches baseline from OEIS.
tauOeis :: Assertion
tauOeis = oeisAssertion "A000005" tauA
  [ 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8
  , 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10
  , 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2
  , 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4
  , 4, 12, 2, 6, 6, 9, 2, 8, 2, 8
  ]

-- | sigma_0 coincides with tau by definition
sigmaProperty1 :: NonZero Natural -> Bool
sigmaProperty1 (NonZero n) = runFunction tauA n == (runFunction (sigmaA 0) n :: Natural)

-- | value of totient is bigger than argument
sigmaProperty2 :: NonZero Natural -> Bool
sigmaProperty2 (NonZero n) = n <= 1 || runFunction (sigmaA 1) n > n

-- | sigma_1 matches baseline from OEIS.
sigma1Oeis :: Assertion
sigma1Oeis = oeisAssertion "A000203" (sigmaA 1)
  [ 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20
  , 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38
  , 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120
  , 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144 :: Natural
  ]

-- | sigma_2 matches baseline from OEIS.
sigma2Oeis :: Assertion
sigma2Oeis = oeisAssertion "A001157" (sigmaA 2)
  [ 1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, 210, 170, 250, 260, 341, 290
  , 455, 362, 546, 500, 610, 530, 850, 651, 850, 820, 1050, 842, 1300, 962
  , 1365, 1220, 1450, 1300, 1911, 1370, 1810, 1700, 2210, 1682, 2500, 1850
  , 2562, 2366, 2650, 2210, 3410, 2451, 3255 :: Natural
  ]

-- | value of totient if even, except totient(1) and totient(2)
totientProperty1 :: NonZero Natural -> Bool
totientProperty1 (NonZero n) = n <= 2 || even (runFunction totientA n)

-- | value of totient is smaller than argument
totientProperty2 :: NonZero Natural -> Bool
totientProperty2 (NonZero n) = n <= 1 || runFunction totientA n < n

-- | totient matches baseline from OEIS.
totientOeis :: Assertion
totientOeis = oeisAssertion "A000010" totientA
  [ 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10
  , 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40
  , 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58
  , 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
  ]

-- | jordan_0 is zero for argument > 1
jordanProperty1 :: NonZero Natural -> Bool
jordanProperty1 (NonZero n) = n <= 1 || runFunction (jordanA 0) n == 0

-- | jordan_1 coincides with totient by definition
jordanProperty2 :: NonZero Natural -> Bool
jordanProperty2 (NonZero n) = runFunction totientA n == runFunction (jordanA 1) n

-- | jordan_2 matches baseline from OEIS.
jordan2Oeis :: Assertion
jordan2Oeis = oeisAssertion "A007434" (jordanA 2)
  [ 1, 3, 8, 12, 24, 24, 48, 48, 72, 72, 120, 96, 168, 144, 192, 192, 288
  , 216, 360, 288, 384, 360, 528, 384, 600, 504, 648, 576, 840, 576, 960
  , 768, 960, 864, 1152, 864, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1440
  , 1728, 1584, 2208, 1536
  ]

-- | congruences 1,2,3,4 from https://en.wikipedia.org/wiki/Ramanujan_tau_function
ramanujanCongruence1 :: NonZero Natural -> Bool
ramanujanCongruence1 (NonZero n)
  | k == 1 = (ramanujan n' - sigma 11 n') `rem` (2^11) == 0
  | k == 3 = (ramanujan n' - 1217 * sigma 11 n') `rem` (2^13) == 0
  | k == 5 = (ramanujan n' - 1537 * sigma 11 n') `rem` (2^12) == 0
  | k == 7 = (ramanujan n' - 705 * sigma 11 n') `rem` (2^14) == 0
  | otherwise = True
  where k = n `mod` 8
        n' = fromIntegral n :: Integer

-- | congruences 8,9 from https://en.wikipedia.org/wiki/Ramanujan_tau_function
ramanujanCongruence2 :: NonZero Natural -> Bool
ramanujanCongruence2 (NonZero n)
  | (n `mod` 7) `elem` [0,1,2,4] = m `rem` 7 == 0
  | otherwise                    = m `rem` 49 == 0
  where m = ramanujan n' - n' * sigma 9 n'
        n' = fromIntegral n :: Integer

-- | ramanujan matches baseline from wolframAlpha: https://www.wolframalpha.com/input/?i=RamanujanTau%5BRange%5B100%5D%5D
ramanujanRange :: Assertion
ramanujanRange = wolframAlphaAssertion "A000594" ramanujanA [1..100]
  [ 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920
  , 534612, -370944, -577738, 401856, 1217160, 987136, -6905934, 2727432
  , 10661420, -7109760, -4219488, -12830688, 18643272, 21288960, -25499225
  , 13865712, -73279080, 24647168, 128406630, -29211840, -52843168
  , -196706304, 134722224, 165742416, -80873520, 167282496, -182213314
  , -255874080, -145589976, 408038400, 308120442, 101267712, -17125708
  , -786948864, -548895690, -447438528, 2687348496, 248758272, -1696965207
  , 611981400, -1740295368, 850430336, -1596055698, 1758697920, 2582175960
  , -1414533120, 2686677840, -3081759120, -5189203740, -1791659520, 6956478662
  , 1268236032, 1902838392, 2699296768, -2790474540, -3233333376, -15481826884
  , 10165534848, 4698104544, 1940964480, 9791485272, -9600560640, 1463791322
  , 4373119536, -6425804700, -15693610240, -8951543328, 3494159424, 38116845680
  , 4767866880, 1665188361, -7394890608, -29335099668, 6211086336, -33355661220
  , 411016992, 32358470760, 45164021760, -24992917110, 13173496560, 9673645072
  , -27442896384, -13316478336, -64496363904, 51494658600, -49569988608
  , 75013568546, 40727164968, -60754911516, 37534859200
  ]

-- | ramanujan matches baseline from wolframAlpha: https://www.wolframalpha.com/input/?i=RamanujanTau%5B2%5ERange%5B20%5D%5D
ramanujanPowers2 :: Assertion
ramanujanPowers2 = wolframAlphaAssertion "wolframAlpha2^n" ramanujanA [2^n | n <- [1..20]]
  [ -24, -1472, 84480, 987136, -196706304, 2699296768, 338071388160
  , -13641873096704, -364965248630784, 36697722069188608, -133296500464680960
  , -71957818786545926144, 1999978883828768833536, 99370119662955604738048
  , -6480839625992253084794880, -47969854045919004468445184
  , 14424036051134190424902598656, -247934604141178449046286630912
  , -23589995333334539213089642905600, 1073929957281162404760946449842176
  ]

-- | ramanujan matches baseline from wolframAlpha: https://www.wolframalpha.com/input/?i=RamanujanTau%5B3%5ERange%5B20%5D%5D
ramanujanPowers3 :: Assertion
ramanujanPowers3 = wolframAlphaAssertion "wolframAlpha3^n" ramanujanA [3^n | n <- [1..20]]
  [ 252, -113643, -73279080, 1665188361, 13400796651732, 3082017633650397
  , -1597242480784468560, -948475282905952954479, 43930942451226107469612
  , 179090148438649827109433637, 37348482744132405171657919560
  , -22313464873940134819697044764519, -12239164820907737153507340756954108
  , 868493827155123300221022518147812077, 2386991774972433985188062567645398013280
  , 447670851294004737003138291024309833342241
  , -310035377434952569449318870332553243856267428
  , -157432463407787104647123294163886831498857358283
  , 15248856227707192449163419793501327951694151780600
  , 31731400364681474724113131979212395183355010696469801
  ]

-- | moebius does not require full factorisation
moebiusLazy :: Assertion
moebiusLazy = assertEqual "moebius" MoebiusZ (runFunction moebiusA (2^2 * (2^100000-1) :: Natural))

-- | moebius matches baseline from OEIS.
moebiusOeis :: Assertion
moebiusOeis = oeisAssertion "A008683" moebiusA
  [ MoebiusP, MoebiusN, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusN, MoebiusZ, MoebiusZ, MoebiusP, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusP, MoebiusZ, MoebiusN, MoebiusZ, MoebiusN, MoebiusZ, MoebiusP, MoebiusP, MoebiusN
  , MoebiusZ, MoebiusZ, MoebiusP, MoebiusZ, MoebiusZ, MoebiusN, MoebiusN, MoebiusN, MoebiusZ, MoebiusP, MoebiusP, MoebiusP, MoebiusZ, MoebiusN, MoebiusP, MoebiusP, MoebiusZ, MoebiusN, MoebiusN, MoebiusN, MoebiusZ, MoebiusZ, MoebiusP
  , MoebiusN, MoebiusZ, MoebiusZ, MoebiusZ, MoebiusP, MoebiusZ, MoebiusN, MoebiusZ, MoebiusP, MoebiusZ, MoebiusP, MoebiusP, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusZ, MoebiusZ, MoebiusP, MoebiusN, MoebiusN, MoebiusZ, MoebiusP
  , MoebiusN, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusZ, MoebiusZ, MoebiusP
  ]

-- | liouville values are [-1, 1]
liouvilleProperty1 :: NonZero Natural -> Bool
liouvilleProperty1 (NonZero n) = runFunction liouvilleA n `elem` [-1, 1]

-- | moebius is zero or equal to liouville
liouvilleProperty2 :: NonZero Natural -> Bool
liouvilleProperty2 (NonZero n) = m == MoebiusZ || l == runMoebius m
  where
    l = runFunction liouvilleA n
    m = runFunction moebiusA   n

-- | liouville matches baseline from OEIS.
liouvilleOeis :: Assertion
liouvilleOeis = oeisAssertion "A008836" liouvilleA
  [ 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1
  , -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1
  , -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1
  , -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1
  , -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1
  ]

-- | carmichaeil divides totient
carmichaelProperty1 :: NonZero Natural -> Bool
carmichaelProperty1 (NonZero n) = runFunction totientA n `rem` runFunction carmichaelA n == 0

-- | carmichael matches baseline from OEIS.
carmichaelOeis :: Assertion
carmichaelOeis = oeisAssertion "A002322" carmichaelA
  [ 1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2
  , 20, 12, 18, 6, 28, 4, 30, 8, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12
  , 22, 46, 4, 42, 20, 16, 12, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12
  , 10, 66, 16, 22, 12, 70, 6, 72, 36, 20, 18, 30, 12, 78, 4, 54
  ]

-- | smallOmega is smaller than bigOmega
omegaProperty1 :: NonZero Natural -> Bool
omegaProperty1 (NonZero n) = runFunction smallOmegaA n <= runFunction bigOmegaA n

-- | smallOmega matches baseline from OEIS.
smallOmegaOeis :: Assertion
smallOmegaOeis = oeisAssertion "A001221" smallOmegaA
  [ 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2
  , 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2
  , 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3
  , 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2
  , 3, 2, 1, 2, 1, 3, 2
  ]

-- | bigOmega matches baseline from OEIS.
bigOmegaOeis :: Assertion
bigOmegaOeis = oeisAssertion "A001222" bigOmegaA
  [ 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2
  , 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3
  , 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 6, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3
  , 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 3, 1, 4
  , 3, 2, 1, 5, 1, 3, 2
  ]

-- | expMangoldt matches baseline from OEIS.
mangoldtOeis :: Assertion
mangoldtOeis = oeisAssertion "A014963" expMangoldtA
  [ 1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1
  , 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1
  , 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1
  , 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1
  ]

nFreedomProperty1 :: Word -> NonZero Natural -> Bool
nFreedomProperty1 n (NonZero m) =
    isNFree n m == (all ((< n) . snd) . factorise) m

nFreedomProperty2 :: Power Word -> NonNegative Int -> Bool
nFreedomProperty2 (Power n) (NonNegative m) =
    let n' | n == maxBound = n
           | otherwise     = n + 1
    in take m (filter (isNFree n') [1 ..]) == take m (nFrees n' :: [Integer])

nFreedomProperty3 :: Power Word -> Positive Int -> Bool
nFreedomProperty3 (Power n) (Positive m) = case drop (m' - 1) $ nFrees n :: [Integer] of
  [] -> True
  x : _ -> 1 / fromIntegral m >= abs (zet - fromIntegral m' / fromIntegral x)
  where
    zet :: Double
    zet = 1 / zetas 1e-14 Inf.!! n

    m' :: Int
    m' = 100 * m

-- |
-- * Using a bounded integer type like @Int@ instead of @Integer@ here means
-- even a relatively low value of @n@, e.g. 20 may cause out-of-bounds memory
-- accesses in @nFreesBlock@.
-- * Using @Integer@ prevents this, so that is the numeric type used here.
nFreesBlockProperty1 :: Power Word -> Positive Integer -> Word -> Bool
nFreesBlockProperty1 (Power n) (Positive lo) w =
    let block = nFreesBlock n lo w
        len   = length block
        blk   = take len . dropWhile (< lo) . nFrees $ n
    in block == blk

nFreedomAssertion1 :: Assertion
nFreedomAssertion1 =
    assertEqual "1 is the sole 0-free number" (nFrees 0) ([1] :: [Int])

nFreedomAssertion2 :: Assertion
nFreedomAssertion2 =
    assertEqual "1 is the sole 1-free number" (nFrees 1) ([1] :: [Int])

testSuite :: TestTree
testSuite = testGroup "ArithmeticFunctions"
  [ testGroup "Divisors"
    [ testSmallAndQuick "length . divisors = tau"  divisorsProperty1
    , testSmallAndQuick "sum . divisors = sigma_1" divisorsProperty2
    , testSmallAndQuick "matches definition"       divisorsProperty3
    , testSmallAndQuick "divisors = divisorsSmall" divisorsProperty4
    , testSmallAndQuick "divisors = divisorsList"  divisorsProperty5
    , testSmallAndQuick "divisors = divisorsTo"  divisorsProperty6
    ]
  , testGroup "Tau"
    [ testCase "OEIS" tauOeis
    ]
  , testGroup "Sigma"
    [ testSmallAndQuick "sigma_0 = tau" sigmaProperty1
    , testSmallAndQuick "sigma_1 n > n" sigmaProperty2
    , testCase          "OEIS sigma_1"  sigma1Oeis
    , testCase          "OEIS sigma_2"  sigma2Oeis
    ]
  , testGroup "Totient"
    [ testSmallAndQuick "totient is even"      totientProperty1
    , testSmallAndQuick "totient n < n"        totientProperty2
    , testCase          "OEIS"                 totientOeis
    ]
  , testGroup "Jordan"
    [ testSmallAndQuick "jordan_0 = [== 1]"  jordanProperty1
    , testSmallAndQuick "jordan_1 = totient" jordanProperty2
    , testCase          "OEIS jordan_2"      jordan2Oeis
    ]
  , testGroup "Ramanujan"
    [ testSmallAndQuick "ramanujan mod 8 congruences" ramanujanCongruence1
    , testSmallAndQuick "ramanujan mod 7 congruences" ramanujanCongruence2
    , testCase          "baseline ramanujan range"    ramanujanRange
    , testCase          "baseline ramanujan powers2"  ramanujanPowers2
    , testCase          "baseline ramanujan powers3"  ramanujanPowers3
    ]
  , testGroup "Moebius"
    [ testCase          "OEIS"           moebiusOeis
    , testCase          "Lazy"           moebiusLazy
    ]
  , testGroup "Liouville"
    [ testSmallAndQuick "liouville values"          liouvilleProperty1
    , testSmallAndQuick "liouville matches moebius" liouvilleProperty2
    , testCase          "OEIS"                      liouvilleOeis
    ]
  , testGroup "Carmichael"
    [ testSmallAndQuick "carmichael divides totient" carmichaelProperty1
    , testCase          "OEIS"                       carmichaelOeis
    ]
  , testGroup "Omegas"
    [ testSmallAndQuick "smallOmega <= bigOmega" omegaProperty1
    , testCase          "OEIS smallOmega"        smallOmegaOeis
    , testCase          "OEIS bigOmega"          bigOmegaOeis
    ]
  , testGroup "Mangoldt"
    [ testCase "OEIS" mangoldtOeis
    ]
  , testGroup "N-freedom"
    [ testSmallAndQuick "`isNFree` matches the definition" nFreedomProperty1
    , testSmallAndQuick "numbers produces by `nFrees`s are `n`-free" nFreedomProperty2
    , testSmallAndQuick "distribution of n-free numbers matches expected" nFreedomProperty3
    , testSmallAndQuick "nFreesBlock matches nFrees" nFreesBlockProperty1
    , testCase "`1` is the only 0-free number" nFreedomAssertion1
    , testCase "`1` is the only 1-free number" nFreedomAssertion2
    ]
  ]