1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
-- |
-- Module: Math.NumberTheory.ArithmeticFunctionsTests
-- Copyright: (c) 2016 Andrew Lelechenko
-- Licence: MIT
-- Maintainer: Andrew Lelechenko <andrew.lelechenko@gmail.com>
--
-- Tests for Math.NumberTheory.ArithmeticFunctions
--
{-# OPTIONS_GHC -fno-warn-type-defaults #-}
module Math.NumberTheory.ArithmeticFunctionsTests
( testSuite
) where
import Test.Tasty
import Test.Tasty.HUnit
import Data.List (sort)
import qualified Data.List.Infinite as Inf
import qualified Data.Set as S
import qualified Data.IntSet as IS
import Math.NumberTheory.ArithmeticFunctions
import Math.NumberTheory.Primes (UniqueFactorisation (factorise))
import Math.NumberTheory.TestUtils
import Math.NumberTheory.Zeta (zetas)
import Numeric.Natural
oeisAssertion :: (Eq a, Show a) => String -> ArithmeticFunction Natural a -> [a] -> Assertion
oeisAssertion name f baseline = assertEqual name baseline (map (runFunction f) [1 .. fromIntegral (length baseline)])
wolframAlphaAssertion :: (Eq a, Show a) => String -> ArithmeticFunction Integer a -> [Integer] -> [a] -> Assertion
wolframAlphaAssertion name f domain baseline = assertEqual name baseline (map (runFunction f) domain)
-- | tau(n) equals to a number of divisors.
divisorsProperty1 :: NonZero Natural -> Bool
divisorsProperty1 (NonZero n) = S.size (runFunction divisorsA n) == runFunction tauA n
-- | sigma(n) equals to a number of divisors.
divisorsProperty2 :: NonZero Natural -> Bool
divisorsProperty2 (NonZero n) = sum (runFunction divisorsA n) == runFunction (sigmaA 1) n
-- | All divisors of n truly divides n.
divisorsProperty3 :: NonZero Natural -> Bool
divisorsProperty3 (NonZero n) = all (\d -> n `rem` d == 0) (runFunction divisorsA n)
-- | 'divisorsA' matches 'divisorsSmallA'
divisorsProperty4 :: NonZero Int -> Bool
divisorsProperty4 (NonZero n) = S.toAscList (runFunction divisorsA n) == IS.toAscList (runFunction divisorsSmallA n)
-- | 'divisorsA' matches 'divisorsListA'
divisorsProperty5 :: NonZero Int -> Bool
divisorsProperty5 (NonZero n) = S.toAscList (runFunction divisorsA n) == sort (runFunction divisorsListA n)
-- | 'divisorsTo' matches 'divisorsA' with a filter
divisorsProperty6 :: Positive Int -> NonNegative Int -> Bool
divisorsProperty6 (Positive a) (NonNegative b) = runFunction (divisorsToA to) n == expected
where to = a
n = to + b
expected = S.filter (<=to) (runFunction divisorsA n)
-- | tau matches baseline from OEIS.
tauOeis :: Assertion
tauOeis = oeisAssertion "A000005" tauA
[ 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8
, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10
, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2
, 12, 2, 4, 6, 6, 4, 8, 2, 10, 5, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4
, 4, 12, 2, 6, 6, 9, 2, 8, 2, 8
]
-- | sigma_0 coincides with tau by definition
sigmaProperty1 :: NonZero Natural -> Bool
sigmaProperty1 (NonZero n) = runFunction tauA n == (runFunction (sigmaA 0) n :: Natural)
-- | value of totient is bigger than argument
sigmaProperty2 :: NonZero Natural -> Bool
sigmaProperty2 (NonZero n) = n <= 1 || runFunction (sigmaA 1) n > n
-- | sigma_1 matches baseline from OEIS.
sigma1Oeis :: Assertion
sigma1Oeis = oeisAssertion "A000203" (sigmaA 1)
[ 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20
, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38
, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120
, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144 :: Natural
]
-- | sigma_2 matches baseline from OEIS.
sigma2Oeis :: Assertion
sigma2Oeis = oeisAssertion "A001157" (sigmaA 2)
[ 1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, 210, 170, 250, 260, 341, 290
, 455, 362, 546, 500, 610, 530, 850, 651, 850, 820, 1050, 842, 1300, 962
, 1365, 1220, 1450, 1300, 1911, 1370, 1810, 1700, 2210, 1682, 2500, 1850
, 2562, 2366, 2650, 2210, 3410, 2451, 3255 :: Natural
]
-- | value of totient if even, except totient(1) and totient(2)
totientProperty1 :: NonZero Natural -> Bool
totientProperty1 (NonZero n) = n <= 2 || even (runFunction totientA n)
-- | value of totient is smaller than argument
totientProperty2 :: NonZero Natural -> Bool
totientProperty2 (NonZero n) = n <= 1 || runFunction totientA n < n
-- | totient matches baseline from OEIS.
totientOeis :: Assertion
totientOeis = oeisAssertion "A000010" totientA
[ 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10
, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40
, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58
, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
]
-- | jordan_0 is zero for argument > 1
jordanProperty1 :: NonZero Natural -> Bool
jordanProperty1 (NonZero n) = n <= 1 || runFunction (jordanA 0) n == 0
-- | jordan_1 coincides with totient by definition
jordanProperty2 :: NonZero Natural -> Bool
jordanProperty2 (NonZero n) = runFunction totientA n == runFunction (jordanA 1) n
-- | jordan_2 matches baseline from OEIS.
jordan2Oeis :: Assertion
jordan2Oeis = oeisAssertion "A007434" (jordanA 2)
[ 1, 3, 8, 12, 24, 24, 48, 48, 72, 72, 120, 96, 168, 144, 192, 192, 288
, 216, 360, 288, 384, 360, 528, 384, 600, 504, 648, 576, 840, 576, 960
, 768, 960, 864, 1152, 864, 1368, 1080, 1344, 1152, 1680, 1152, 1848, 1440
, 1728, 1584, 2208, 1536
]
-- | congruences 1,2,3,4 from https://en.wikipedia.org/wiki/Ramanujan_tau_function
ramanujanCongruence1 :: NonZero Natural -> Bool
ramanujanCongruence1 (NonZero n)
| k == 1 = (ramanujan n' - sigma 11 n') `rem` (2^11) == 0
| k == 3 = (ramanujan n' - 1217 * sigma 11 n') `rem` (2^13) == 0
| k == 5 = (ramanujan n' - 1537 * sigma 11 n') `rem` (2^12) == 0
| k == 7 = (ramanujan n' - 705 * sigma 11 n') `rem` (2^14) == 0
| otherwise = True
where k = n `mod` 8
n' = fromIntegral n :: Integer
-- | congruences 8,9 from https://en.wikipedia.org/wiki/Ramanujan_tau_function
ramanujanCongruence2 :: NonZero Natural -> Bool
ramanujanCongruence2 (NonZero n)
| (n `mod` 7) `elem` [0,1,2,4] = m `rem` 7 == 0
| otherwise = m `rem` 49 == 0
where m = ramanujan n' - n' * sigma 9 n'
n' = fromIntegral n :: Integer
-- | ramanujan matches baseline from wolframAlpha: https://www.wolframalpha.com/input/?i=RamanujanTau%5BRange%5B100%5D%5D
ramanujanRange :: Assertion
ramanujanRange = wolframAlphaAssertion "A000594" ramanujanA [1..100]
[ 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920
, 534612, -370944, -577738, 401856, 1217160, 987136, -6905934, 2727432
, 10661420, -7109760, -4219488, -12830688, 18643272, 21288960, -25499225
, 13865712, -73279080, 24647168, 128406630, -29211840, -52843168
, -196706304, 134722224, 165742416, -80873520, 167282496, -182213314
, -255874080, -145589976, 408038400, 308120442, 101267712, -17125708
, -786948864, -548895690, -447438528, 2687348496, 248758272, -1696965207
, 611981400, -1740295368, 850430336, -1596055698, 1758697920, 2582175960
, -1414533120, 2686677840, -3081759120, -5189203740, -1791659520, 6956478662
, 1268236032, 1902838392, 2699296768, -2790474540, -3233333376, -15481826884
, 10165534848, 4698104544, 1940964480, 9791485272, -9600560640, 1463791322
, 4373119536, -6425804700, -15693610240, -8951543328, 3494159424, 38116845680
, 4767866880, 1665188361, -7394890608, -29335099668, 6211086336, -33355661220
, 411016992, 32358470760, 45164021760, -24992917110, 13173496560, 9673645072
, -27442896384, -13316478336, -64496363904, 51494658600, -49569988608
, 75013568546, 40727164968, -60754911516, 37534859200
]
-- | ramanujan matches baseline from wolframAlpha: https://www.wolframalpha.com/input/?i=RamanujanTau%5B2%5ERange%5B20%5D%5D
ramanujanPowers2 :: Assertion
ramanujanPowers2 = wolframAlphaAssertion "wolframAlpha2^n" ramanujanA [2^n | n <- [1..20]]
[ -24, -1472, 84480, 987136, -196706304, 2699296768, 338071388160
, -13641873096704, -364965248630784, 36697722069188608, -133296500464680960
, -71957818786545926144, 1999978883828768833536, 99370119662955604738048
, -6480839625992253084794880, -47969854045919004468445184
, 14424036051134190424902598656, -247934604141178449046286630912
, -23589995333334539213089642905600, 1073929957281162404760946449842176
]
-- | ramanujan matches baseline from wolframAlpha: https://www.wolframalpha.com/input/?i=RamanujanTau%5B3%5ERange%5B20%5D%5D
ramanujanPowers3 :: Assertion
ramanujanPowers3 = wolframAlphaAssertion "wolframAlpha3^n" ramanujanA [3^n | n <- [1..20]]
[ 252, -113643, -73279080, 1665188361, 13400796651732, 3082017633650397
, -1597242480784468560, -948475282905952954479, 43930942451226107469612
, 179090148438649827109433637, 37348482744132405171657919560
, -22313464873940134819697044764519, -12239164820907737153507340756954108
, 868493827155123300221022518147812077, 2386991774972433985188062567645398013280
, 447670851294004737003138291024309833342241
, -310035377434952569449318870332553243856267428
, -157432463407787104647123294163886831498857358283
, 15248856227707192449163419793501327951694151780600
, 31731400364681474724113131979212395183355010696469801
]
-- | moebius does not require full factorisation
moebiusLazy :: Assertion
moebiusLazy = assertEqual "moebius" MoebiusZ (runFunction moebiusA (2^2 * (2^100000-1) :: Natural))
-- | moebius matches baseline from OEIS.
moebiusOeis :: Assertion
moebiusOeis = oeisAssertion "A008683" moebiusA
[ MoebiusP, MoebiusN, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusN, MoebiusZ, MoebiusZ, MoebiusP, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusP, MoebiusZ, MoebiusN, MoebiusZ, MoebiusN, MoebiusZ, MoebiusP, MoebiusP, MoebiusN
, MoebiusZ, MoebiusZ, MoebiusP, MoebiusZ, MoebiusZ, MoebiusN, MoebiusN, MoebiusN, MoebiusZ, MoebiusP, MoebiusP, MoebiusP, MoebiusZ, MoebiusN, MoebiusP, MoebiusP, MoebiusZ, MoebiusN, MoebiusN, MoebiusN, MoebiusZ, MoebiusZ, MoebiusP
, MoebiusN, MoebiusZ, MoebiusZ, MoebiusZ, MoebiusP, MoebiusZ, MoebiusN, MoebiusZ, MoebiusP, MoebiusZ, MoebiusP, MoebiusP, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusZ, MoebiusZ, MoebiusP, MoebiusN, MoebiusN, MoebiusZ, MoebiusP
, MoebiusN, MoebiusN, MoebiusZ, MoebiusN, MoebiusP, MoebiusZ, MoebiusZ, MoebiusP
]
-- | liouville values are [-1, 1]
liouvilleProperty1 :: NonZero Natural -> Bool
liouvilleProperty1 (NonZero n) = runFunction liouvilleA n `elem` [-1, 1]
-- | moebius is zero or equal to liouville
liouvilleProperty2 :: NonZero Natural -> Bool
liouvilleProperty2 (NonZero n) = m == MoebiusZ || l == runMoebius m
where
l = runFunction liouvilleA n
m = runFunction moebiusA n
-- | liouville matches baseline from OEIS.
liouvilleOeis :: Assertion
liouvilleOeis = oeisAssertion "A008836" liouvilleA
[ 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, 1, 1
, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, -1
, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1
, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1
, -1, 1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1
]
-- | carmichaeil divides totient
carmichaelProperty1 :: NonZero Natural -> Bool
carmichaelProperty1 (NonZero n) = runFunction totientA n `rem` runFunction carmichaelA n == 0
-- | carmichael matches baseline from OEIS.
carmichaelOeis :: Assertion
carmichaelOeis = oeisAssertion "A002322" carmichaelA
[ 1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2
, 20, 12, 18, 6, 28, 4, 30, 8, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12
, 22, 46, 4, 42, 20, 16, 12, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12
, 10, 66, 16, 22, 12, 70, 6, 72, 36, 20, 18, 30, 12, 78, 4, 54
]
-- | smallOmega is smaller than bigOmega
omegaProperty1 :: NonZero Natural -> Bool
omegaProperty1 (NonZero n) = runFunction smallOmegaA n <= runFunction bigOmegaA n
-- | smallOmega matches baseline from OEIS.
smallOmegaOeis :: Assertion
smallOmegaOeis = oeisAssertion "A001221" smallOmegaA
[ 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2
, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2
, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3
, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2
, 3, 2, 1, 2, 1, 3, 2
]
-- | bigOmega matches baseline from OEIS.
bigOmegaOeis :: Assertion
bigOmegaOeis = oeisAssertion "A001222" bigOmegaA
[ 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2
, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3
, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 6, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3
, 1, 5, 4, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 3, 1, 4
, 3, 2, 1, 5, 1, 3, 2
]
-- | expMangoldt matches baseline from OEIS.
mangoldtOeis :: Assertion
mangoldtOeis = oeisAssertion "A014963" expMangoldtA
[ 1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1
, 5, 1, 3, 1, 29, 1, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1
, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 2, 1, 1, 67, 1, 1, 1, 71, 1
, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1
]
nFreedomProperty1 :: Word -> NonZero Natural -> Bool
nFreedomProperty1 n (NonZero m) =
isNFree n m == (all ((< n) . snd) . factorise) m
nFreedomProperty2 :: Power Word -> NonNegative Int -> Bool
nFreedomProperty2 (Power n) (NonNegative m) =
let n' | n == maxBound = n
| otherwise = n + 1
in take m (filter (isNFree n') [1 ..]) == take m (nFrees n' :: [Integer])
nFreedomProperty3 :: Power Word -> Positive Int -> Bool
nFreedomProperty3 (Power n) (Positive m) = case drop (m' - 1) $ nFrees n :: [Integer] of
[] -> True
x : _ -> 1 / fromIntegral m >= abs (zet - fromIntegral m' / fromIntegral x)
where
zet :: Double
zet = 1 / zetas 1e-14 Inf.!! n
m' :: Int
m' = 100 * m
-- |
-- * Using a bounded integer type like @Int@ instead of @Integer@ here means
-- even a relatively low value of @n@, e.g. 20 may cause out-of-bounds memory
-- accesses in @nFreesBlock@.
-- * Using @Integer@ prevents this, so that is the numeric type used here.
nFreesBlockProperty1 :: Power Word -> Positive Integer -> Word -> Bool
nFreesBlockProperty1 (Power n) (Positive lo) w =
let block = nFreesBlock n lo w
len = length block
blk = take len . dropWhile (< lo) . nFrees $ n
in block == blk
nFreedomAssertion1 :: Assertion
nFreedomAssertion1 =
assertEqual "1 is the sole 0-free number" (nFrees 0) ([1] :: [Int])
nFreedomAssertion2 :: Assertion
nFreedomAssertion2 =
assertEqual "1 is the sole 1-free number" (nFrees 1) ([1] :: [Int])
testSuite :: TestTree
testSuite = testGroup "ArithmeticFunctions"
[ testGroup "Divisors"
[ testSmallAndQuick "length . divisors = tau" divisorsProperty1
, testSmallAndQuick "sum . divisors = sigma_1" divisorsProperty2
, testSmallAndQuick "matches definition" divisorsProperty3
, testSmallAndQuick "divisors = divisorsSmall" divisorsProperty4
, testSmallAndQuick "divisors = divisorsList" divisorsProperty5
, testSmallAndQuick "divisors = divisorsTo" divisorsProperty6
]
, testGroup "Tau"
[ testCase "OEIS" tauOeis
]
, testGroup "Sigma"
[ testSmallAndQuick "sigma_0 = tau" sigmaProperty1
, testSmallAndQuick "sigma_1 n > n" sigmaProperty2
, testCase "OEIS sigma_1" sigma1Oeis
, testCase "OEIS sigma_2" sigma2Oeis
]
, testGroup "Totient"
[ testSmallAndQuick "totient is even" totientProperty1
, testSmallAndQuick "totient n < n" totientProperty2
, testCase "OEIS" totientOeis
]
, testGroup "Jordan"
[ testSmallAndQuick "jordan_0 = [== 1]" jordanProperty1
, testSmallAndQuick "jordan_1 = totient" jordanProperty2
, testCase "OEIS jordan_2" jordan2Oeis
]
, testGroup "Ramanujan"
[ testSmallAndQuick "ramanujan mod 8 congruences" ramanujanCongruence1
, testSmallAndQuick "ramanujan mod 7 congruences" ramanujanCongruence2
, testCase "baseline ramanujan range" ramanujanRange
, testCase "baseline ramanujan powers2" ramanujanPowers2
, testCase "baseline ramanujan powers3" ramanujanPowers3
]
, testGroup "Moebius"
[ testCase "OEIS" moebiusOeis
, testCase "Lazy" moebiusLazy
]
, testGroup "Liouville"
[ testSmallAndQuick "liouville values" liouvilleProperty1
, testSmallAndQuick "liouville matches moebius" liouvilleProperty2
, testCase "OEIS" liouvilleOeis
]
, testGroup "Carmichael"
[ testSmallAndQuick "carmichael divides totient" carmichaelProperty1
, testCase "OEIS" carmichaelOeis
]
, testGroup "Omegas"
[ testSmallAndQuick "smallOmega <= bigOmega" omegaProperty1
, testCase "OEIS smallOmega" smallOmegaOeis
, testCase "OEIS bigOmega" bigOmegaOeis
]
, testGroup "Mangoldt"
[ testCase "OEIS" mangoldtOeis
]
, testGroup "N-freedom"
[ testSmallAndQuick "`isNFree` matches the definition" nFreedomProperty1
, testSmallAndQuick "numbers produces by `nFrees`s are `n`-free" nFreedomProperty2
, testSmallAndQuick "distribution of n-free numbers matches expected" nFreedomProperty3
, testSmallAndQuick "nFreesBlock matches nFrees" nFreesBlockProperty1
, testCase "`1` is the only 0-free number" nFreedomAssertion1
, testCase "`1` is the only 1-free number" nFreedomAssertion2
]
]
|