File: Stream.hs

package info (click to toggle)
haskell-arrows 0.4.4.2-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 152 kB
  • sloc: haskell: 917; makefile: 2
file content (176 lines) | stat: -rw-r--r-- 5,667 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE Rank2Types #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Arrow.Transformer.Stream
-- Copyright   :  (c) Ross Paterson 2003
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  R.Paterson@city.ac.uk
-- Stability   :  experimental
-- Portability :  non-portable (multi-parameter type classes)
--
-- Arrow transformer lifting an arrow to streams.

module Control.Arrow.Transformer.Stream(
    StreamArrow(StreamArrow),
    runStream,
    StreamMap,
    StreamMapST, runStreamST,
    ArrowAddStream(..),
    ) where

import Control.Arrow.Internals
import Control.Arrow.Operations
import Control.Arrow.Transformer

import Control.Applicative
import Control.Arrow
import Control.Category
import Control.Monad.ST
import Data.Monoid
#if (MIN_VERSION_base(4,9,0)) && !(MIN_VERSION_base(4,11,0))
import Data.Semigroup
#endif
import Data.Stream (Stream(..))
import qualified Data.Stream as Stream

import Prelude hiding (id,(.))

-- | Arrows between streams.
--
-- /Note/: 'lift' is only a functor if '***' in the underlying arrow is.

newtype StreamArrow a b c = StreamArrow (a (Stream b) (Stream c))

instance Category a => Category (StreamArrow a) where
    id = StreamArrow id
    StreamArrow f . StreamArrow g = StreamArrow (f . g)

instance Arrow a => Arrow (StreamArrow a) where
    arr f = StreamArrow (arr (fmap f))
    first (StreamArrow f) =
        StreamArrow (arr Stream.unzip >>> first f >>> arr (uncurry Stream.zip))

genmap :: Arrow a => a b c -> a (Stream b) (Stream c)
genmap f =
    arr (\xs -> (Stream.head xs, Stream.tail xs)) >>>
        f *** genmap f >>> arr (uncurry (Stream.Cons))

-- Caution: genmap is only a functor if *** for the base arrow is.
-- (For Kleisli arrows, that would mean a commutative monad.)
-- The same goes for the equivalent lift: it can be used to lift arrows,
-- but won't preserve composition unless *** does.

instance Arrow a => ArrowTransformer (StreamArrow) a where
    lift f = StreamArrow (genmap f)

-- The following promotions follow directly from the arrow transformer.

instance ArrowZero a => ArrowZero (StreamArrow a) where
    zeroArrow = lift zeroArrow

instance ArrowState s a => ArrowState s (StreamArrow a) where
    fetch = lift fetch
    store = lift store

instance ArrowWriter w a => ArrowWriter w (StreamArrow a) where
    write = lift write
    newWriter (StreamArrow f) = StreamArrow (newWriter f >>> arr strength)
      where
        strength :: Functor w' => (w' a',b) -> w' (a',b)
        strength (v, y) = fmap (\x -> (x, y)) v

-- liftings of standard classes

instance Arrow a => ArrowChoice (StreamArrow a) where
    left (StreamArrow f) =
        StreamArrow ((arr getLeft >>> f) &&& arr id >>> arr replace)
      where
        getLeft (Cons (Left x) xs) = Cons x (getLeft xs)
        getLeft (Cons (Right _) xs) = getLeft xs
        replace (~(Cons x xs), Cons (Left _) ys) =
            Cons (Left x) (replace (xs, ys))
        replace (xs, Cons (Right y) ys) =
            Cons (Right y) (replace (xs, ys))

instance ArrowLoop a => ArrowLoop (StreamArrow a) where
    loop (StreamArrow f) =
        StreamArrow (loop (arr (uncurry Stream.zip) >>> f >>> arr Stream.unzip))

instance ArrowPlus a => ArrowPlus (StreamArrow a) where
    StreamArrow f <+> StreamArrow g = StreamArrow (f <+> g)

-- I don't know of any other useful promotions.
-- (elimWriter can be promoted, but doesn't seem useful.)

-- Circuits

instance ArrowLoop a => ArrowCircuit (StreamArrow a) where
    delay x = StreamArrow (arr (Cons x))

-- Other instances

instance Arrow a => Functor (StreamArrow a b) where
    fmap f g = g >>> arr f

instance Arrow a => Applicative (StreamArrow a b) where
    pure x = arr (const x)
    f <*> g = f &&& g >>> arr (uncurry id)

instance ArrowPlus a => Alternative (StreamArrow a b) where
    empty = zeroArrow
    f <|> g = f <+> g

#if MIN_VERSION_base(4,9,0)
instance ArrowPlus a => Semigroup (StreamArrow a b c) where
    (<>) = (<+>)
#endif

instance ArrowPlus a => Monoid (StreamArrow a b c) where
    mempty = zeroArrow
#if !(MIN_VERSION_base(4,11,0))
    mappend = (<+>)
#endif

-- | Run a stream processor on a stream of inputs, obtaining a stream
-- of outputs.
--
-- Typical usage in arrow notation:
--
-- >    proc p -> do
-- >        ...
-- >        ys <- (|runStream (\x -> ...)|) xs
--
-- Here @xs@ refers to the input stream and @x@ to individual
-- elements of that stream.  @ys@ is bound to the output stream.

runStream :: ArrowLoop a => StreamArrow a (e,b) c -> a (e,Stream b) (Stream c)
runStream (StreamArrow f) = arr (\(e, xs) -> fmap (\x -> (e, x)) xs) >>> f

instance ArrowLoop a => ArrowAddStream (StreamArrow a) a where
    liftStream = lift
    elimStream = runStream

-- | Mappings of streams
type StreamMap = StreamArrow (->)

-- | In-place state updates.
--
-- /Note/: this is an arrow type, and 'lift' can be used to promote arrows
-- from @'Kleisli' ('ST' s)@: the resulting arrow updates the state for
-- each stream element in turn, and as long as the final state in not
-- required all is well.  However, 'lift' does not preserve composition,
-- because this monad isn't commutative.  In particular, a composition
-- of 'lift's of state transformers will not work, as the second will
-- require the final state of the first.

type StreamMapST s = StreamArrow (Kleisli (ST s))

-- | Encapsulate a local state.

runStreamST :: (forall s. StreamMapST s e c) -> StreamMap e c
runStreamST cf = StreamArrow $ \ input ->
    runST (let StreamArrow (Kleisli f) = cf in f input)