1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
-- |
-- Module : Data.ASN1.Prim
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : unknown
--
-- Tools to read ASN1 primitive (e.g. boolean, int)
--
{-# LANGUAGE CPP #-}
{-# LANGUAGE ViewPatterns #-}
module Data.ASN1.Prim
(
-- * ASN1 high level algebraic type
ASN1(..)
, ASN1ConstructionType(..)
, encodeHeader
, encodePrimitiveHeader
, encodePrimitive
, decodePrimitive
, encodeConstructed
, encodeList
, encodeOne
, mkSmallestLength
-- * marshall an ASN1 type from a val struct or a bytestring
, getBoolean
, getInteger
, getDouble
, getBitString
, getOctetString
, getNull
, getOID
, getTime
-- * marshall an ASN1 type to a bytestring
, putTime
, putInteger
, putDouble
, putBitString
, putString
, putOID
) where
import Data.ASN1.Internal
import Data.ASN1.Stream
import Data.ASN1.BitArray
import Data.ASN1.Types
import Data.ASN1.Types.Lowlevel
import Data.ASN1.Error
import Data.ASN1.Serialize
import Data.Bits
import Data.Monoid
import Data.Word
import Data.List (unfoldr)
import Data.ByteString (ByteString)
import Data.Char (ord, isDigit)
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as BC
import qualified Data.ByteString.Unsafe as B
import Data.Hourglass
import Control.Arrow (first)
import Control.Applicative
import Control.Monad
encodeHeader :: Bool -> ASN1Length -> ASN1 -> ASN1Header
encodeHeader pc len (Boolean _) = ASN1Header Universal 0x1 pc len
encodeHeader pc len (IntVal _) = ASN1Header Universal 0x2 pc len
encodeHeader pc len (BitString _) = ASN1Header Universal 0x3 pc len
encodeHeader pc len (OctetString _) = ASN1Header Universal 0x4 pc len
encodeHeader pc len Null = ASN1Header Universal 0x5 pc len
encodeHeader pc len (OID _) = ASN1Header Universal 0x6 pc len
encodeHeader pc len (Real _) = ASN1Header Universal 0x9 pc len
encodeHeader pc len (Enumerated _) = ASN1Header Universal 0xa pc len
encodeHeader pc len (ASN1String cs) = ASN1Header Universal (characterStringType $ characterEncoding cs) pc len
where characterStringType UTF8 = 0xc
characterStringType Numeric = 0x12
characterStringType Printable = 0x13
characterStringType T61 = 0x14
characterStringType VideoTex = 0x15
characterStringType IA5 = 0x16
characterStringType Graphic = 0x19
characterStringType Visible = 0x1a
characterStringType General = 0x1b
characterStringType UTF32 = 0x1c
characterStringType Character = 0x1d
characterStringType BMP = 0x1e
encodeHeader pc len (ASN1Time TimeUTC _ _) = ASN1Header Universal 0x17 pc len
encodeHeader pc len (ASN1Time TimeGeneralized _ _) = ASN1Header Universal 0x18 pc len
encodeHeader pc len (Start Sequence) = ASN1Header Universal 0x10 pc len
encodeHeader pc len (Start Set) = ASN1Header Universal 0x11 pc len
encodeHeader pc len (Start (Container tc tag)) = ASN1Header tc tag pc len
encodeHeader pc len (Other tc tag _) = ASN1Header tc tag pc len
encodeHeader _ _ (End _) = error "this should not happen"
encodePrimitiveHeader :: ASN1Length -> ASN1 -> ASN1Header
encodePrimitiveHeader = encodeHeader False
encodePrimitiveData :: ASN1 -> ByteString
encodePrimitiveData (Boolean b) = B.singleton (if b then 0xff else 0)
encodePrimitiveData (IntVal i) = putInteger i
encodePrimitiveData (BitString bits) = putBitString bits
encodePrimitiveData (OctetString b) = putString b
encodePrimitiveData Null = B.empty
encodePrimitiveData (OID oidv) = putOID oidv
encodePrimitiveData (Real d) = putDouble d
encodePrimitiveData (Enumerated i) = putInteger $ fromIntegral i
encodePrimitiveData (ASN1String cs) = getCharacterStringRawData cs
encodePrimitiveData (ASN1Time ty ti tz) = putTime ty ti tz
encodePrimitiveData (Other _ _ b) = b
encodePrimitiveData o = error ("not a primitive " ++ show o)
encodePrimitive :: ASN1 -> (Int, [ASN1Event])
encodePrimitive a =
let b = encodePrimitiveData a
blen = B.length b
len = makeLength blen
hdr = encodePrimitiveHeader len a
in (B.length (putHeader hdr) + blen, [Header hdr, Primitive b])
where
makeLength len
| len < 0x80 = LenShort len
| otherwise = LenLong (nbBytes len) len
nbBytes nb = if nb > 255 then 1 + nbBytes (nb `div` 256) else 1
encodeOne :: ASN1 -> (Int, [ASN1Event])
encodeOne (Start _) = error "encode one cannot do start"
encodeOne t = encodePrimitive t
encodeList :: [ASN1] -> (Int, [ASN1Event])
encodeList [] = (0, [])
encodeList (End _:xs) = encodeList xs
encodeList (t@(Start _):xs) =
let (ys, zs) = getConstructedEnd 0 xs
(llen, lev) = encodeList zs
(len, ev) = encodeConstructed t ys
in (llen + len, ev ++ lev)
encodeList (x:xs) =
let (llen, lev) = encodeList xs
(len, ev) = encodeOne x
in (llen + len, ev ++ lev)
encodeConstructed :: ASN1 -> [ASN1] -> (Int, [ASN1Event])
encodeConstructed c@(Start _) children =
(tlen, Header h : ConstructionBegin : events ++ [ConstructionEnd])
where (clen, events) = encodeList children
len = mkSmallestLength clen
h = encodeHeader True len c
tlen = B.length (putHeader h) + clen
encodeConstructed _ _ = error "not a start node"
mkSmallestLength :: Int -> ASN1Length
mkSmallestLength i
| i < 0x80 = LenShort i
| otherwise = LenLong (nbBytes i) i
where nbBytes nb = if nb > 255 then 1 + nbBytes (nb `div` 256) else 1
type ASN1Ret = Either ASN1Error ASN1
decodePrimitive :: ASN1Header -> B.ByteString -> ASN1Ret
decodePrimitive (ASN1Header Universal 0x1 _ _) p = getBoolean False p
decodePrimitive (ASN1Header Universal 0x2 _ _) p = getInteger p
decodePrimitive (ASN1Header Universal 0x3 _ _) p = getBitString p
decodePrimitive (ASN1Header Universal 0x4 _ _) p = getOctetString p
decodePrimitive (ASN1Header Universal 0x5 _ _) p = getNull p
decodePrimitive (ASN1Header Universal 0x6 _ _) p = getOID p
decodePrimitive (ASN1Header Universal 0x7 _ _) _ = Left $ TypeNotImplemented "Object Descriptor"
decodePrimitive (ASN1Header Universal 0x8 _ _) _ = Left $ TypeNotImplemented "External"
decodePrimitive (ASN1Header Universal 0x9 _ _) p = getDouble p
decodePrimitive (ASN1Header Universal 0xa _ _) p = getEnumerated p
decodePrimitive (ASN1Header Universal 0xb _ _) _ = Left $ TypeNotImplemented "EMBEDDED PDV"
decodePrimitive (ASN1Header Universal 0xc _ _) p = getCharacterString UTF8 p
decodePrimitive (ASN1Header Universal 0xd _ _) _ = Left $ TypeNotImplemented "RELATIVE-OID"
decodePrimitive (ASN1Header Universal 0x10 _ _) _ = Left $ TypePrimitiveInvalid "sequence"
decodePrimitive (ASN1Header Universal 0x11 _ _) _ = Left $ TypePrimitiveInvalid "set"
decodePrimitive (ASN1Header Universal 0x12 _ _) p = getCharacterString Numeric p
decodePrimitive (ASN1Header Universal 0x13 _ _) p = getCharacterString Printable p
decodePrimitive (ASN1Header Universal 0x14 _ _) p = getCharacterString T61 p
decodePrimitive (ASN1Header Universal 0x15 _ _) p = getCharacterString VideoTex p
decodePrimitive (ASN1Header Universal 0x16 _ _) p = getCharacterString IA5 p
decodePrimitive (ASN1Header Universal 0x17 _ _) p = getTime TimeUTC p
decodePrimitive (ASN1Header Universal 0x18 _ _) p = getTime TimeGeneralized p
decodePrimitive (ASN1Header Universal 0x19 _ _) p = getCharacterString Graphic p
decodePrimitive (ASN1Header Universal 0x1a _ _) p = getCharacterString Visible p
decodePrimitive (ASN1Header Universal 0x1b _ _) p = getCharacterString General p
decodePrimitive (ASN1Header Universal 0x1c _ _) p = getCharacterString UTF32 p
decodePrimitive (ASN1Header Universal 0x1d _ _) p = getCharacterString Character p
decodePrimitive (ASN1Header Universal 0x1e _ _) p = getCharacterString BMP p
decodePrimitive (ASN1Header tc tag _ _) p = Right $ Other tc tag p
getBoolean :: Bool -> ByteString -> Either ASN1Error ASN1
getBoolean isDer s =
if B.length s == 1
then case B.head s of
0 -> Right (Boolean False)
0xff -> Right (Boolean True)
_ -> if isDer then Left $ PolicyFailed "DER" "boolean value not canonical" else Right (Boolean True)
else Left $ TypeDecodingFailed "boolean: length not within bound"
{- | getInteger, parse a value bytestring and get the integer out of the two complement encoded bytes -}
getInteger :: ByteString -> Either ASN1Error ASN1
{-# INLINE getInteger #-}
getInteger s = IntVal <$> getIntegerRaw "integer" s
{- | getEnumerated, parse an enumerated value the same way that integer values are parsed. -}
getEnumerated :: ByteString -> Either ASN1Error ASN1
{-# INLINE getEnumerated #-}
getEnumerated s = Enumerated <$> getIntegerRaw "enumerated" s
{- | According to X.690 section 8.4 integer and enumerated values should be encoded the same way. -}
getIntegerRaw :: String -> ByteString -> Either ASN1Error Integer
getIntegerRaw typestr s
| B.length s == 0 = Left . TypeDecodingFailed $ typestr ++ ": null encoding"
| B.length s == 1 = Right $ snd $ intOfBytes s
| otherwise =
if (v1 == 0xff && testBit v2 7) || (v1 == 0x0 && (not $ testBit v2 7))
then Left . TypeDecodingFailed $ typestr ++ ": not shortest encoding"
else Right $ snd $ intOfBytes s
where
v1 = s `B.index` 0
v2 = s `B.index` 1
getDouble :: ByteString -> Either ASN1Error ASN1
getDouble s = Real <$> getDoubleRaw s
getDoubleRaw :: ByteString -> Either ASN1Error Double
getDoubleRaw s
| B.null s = Right 0
getDoubleRaw s@(B.unsafeHead -> h)
| h == 0x40 = Right $! (1/0) -- Infinity
| h == 0x41 = Right $! (-1/0) -- -Infinity
| h == 0x42 = Right $! (0/0) -- NaN
| otherwise = do
let len = B.length s
base <- case (h `testBit` 5, h `testBit` 4) of
-- extract bits 5,4 for the base
(False, False) -> return 2
(False, True) -> return 8
(True, False) -> return 16
_ -> Left . TypeDecodingFailed $ "real: invalid base detected"
-- check bit 6 for the sign
let mkSigned = if h `testBit` 6 then negate else id
-- extract bits 3,2 for the scaling factor
let scaleFactor = (h .&. 0x0c) `shiftR` 2
expLength <- getExponentLength len h s
-- 1 byte for the header, expLength for the exponent, and at least 1 byte for the mantissa
unless (len > 1 + fromIntegral expLength) $
Left . TypeDecodingFailed $ "real: not enough input for exponent and mantissa"
let (_, exp'') = intOfBytes $ B.unsafeTake (fromIntegral expLength) $ B.unsafeDrop 1 s
let exp' = case base :: Int of
2 -> exp''
8 -> 3 * exp''
_ -> 4 * exp'' -- must be 16
exponent = exp' - fromIntegral scaleFactor
-- whatever is leftover is the mantissa, unsigned
(_, mantissa) = uintOfBytes $ B.unsafeDrop (1 + fromIntegral expLength) s
Right $! encodeFloat (mkSigned $ toInteger mantissa) (fromIntegral exponent)
getExponentLength :: Int -> Word8 -> ByteString -> Either ASN1Error Word8
getExponentLength len h s =
case h .&. 0x03 of
l | l == 0x03 -> do
unless (len > 1) $ Left . TypeDecodingFailed $ "real: not enough input to decode exponent length"
return $ B.unsafeIndex s 1
| otherwise -> return $ l + 1
getBitString :: ByteString -> Either ASN1Error ASN1
getBitString s =
let toSkip = B.head s in
let toSkip' = if toSkip >= 48 && toSkip <= 48 + 7 then toSkip - (fromIntegral $ ord '0') else toSkip in
let xs = B.tail s in
if toSkip' >= 0 && toSkip' <= 7
then Right $ BitString $ toBitArray xs (fromIntegral toSkip')
else Left $ TypeDecodingFailed ("bitstring: skip number not within bound " ++ show toSkip' ++ " " ++ show s)
getCharacterString :: ASN1StringEncoding -> ByteString -> Either ASN1Error ASN1
getCharacterString encoding bs = Right $ ASN1String (ASN1CharacterString encoding bs)
getOctetString :: ByteString -> Either ASN1Error ASN1
getOctetString = Right . OctetString
getNull :: ByteString -> Either ASN1Error ASN1
getNull s
| B.length s == 0 = Right Null
| otherwise = Left $ TypeDecodingFailed "Null: data length not within bound"
{- | return an OID -}
getOID :: ByteString -> Either ASN1Error ASN1
getOID s = Right $ OID $ (fromIntegral (x `div` 40) : fromIntegral (x `mod` 40) : groupOID xs)
where
(x:xs) = B.unpack s
groupOID :: [Word8] -> [Integer]
groupOID = map (foldl (\acc n -> (acc `shiftL` 7) + fromIntegral n) 0) . groupSubOID
groupSubOIDHelper [] = Nothing
groupSubOIDHelper l = Just $ spanSubOIDbound l
groupSubOID :: [Word8] -> [[Word8]]
groupSubOID = unfoldr groupSubOIDHelper
spanSubOIDbound [] = ([], [])
spanSubOIDbound (a:as) = if testBit a 7 then (clearBit a 7 : ys, zs) else ([a], as)
where (ys, zs) = spanSubOIDbound as
getTime :: ASN1TimeType -> ByteString -> Either ASN1Error ASN1
getTime timeType bs
| hasNonASCII bs = decodingError "contains non ASCII characters"
| otherwise =
case timeParseE format (BC.unpack bs) of -- BC.unpack is safe as we check ASCIIness first
Left _ ->
case timeParseE formatNoSeconds (BC.unpack bs) of
Left _ -> decodingError ("cannot convert string " ++ BC.unpack bs)
Right r -> parseRemaining r
Right r -> parseRemaining r
where
parseRemaining r =
case parseTimezone $ parseMs $ first adjustUTC r of
Left err -> decodingError err
Right (dt', tz) -> Right $ ASN1Time timeType dt' tz
adjustUTC dt@(DateTime (Date y m d) tod)
| timeType == TimeGeneralized = dt
| y > 2050 = DateTime (Date (y - 100) m d) tod
| otherwise = dt
formatNoSeconds = init format
format | timeType == TimeGeneralized = 'Y':'Y':baseFormat
| otherwise = baseFormat
baseFormat = "YYMMDDHMIS"
parseMs (dt,s) =
case s of
'.':s' -> let (ns, r) = first toNano $ spanToLength 3 isDigit s'
in (dt { dtTime = (dtTime dt) { todNSec = ns } }, r)
_ -> (dt,s)
parseTimezone (dt,s) =
case s of
'+':s' -> Right (dt, parseTimezoneFormat id s')
'-':s' -> Right (dt, parseTimezoneFormat ((-1) *) s')
'Z':[] -> Right (dt, Just timezone_UTC)
"" -> Right (dt, Nothing)
_ -> Left ("unknown timezone format: " ++ s)
parseTimezoneFormat transform s
| length s == 4 = Just $ toTz $ toInt $ fst $ spanToLength 4 isDigit s
| otherwise = Nothing
where toTz z = let (h,m) = z `divMod` 100 in TimezoneOffset $ transform (h * 60 + m)
toNano :: String -> NanoSeconds
toNano l = fromIntegral (toInt l * order * 1000000)
where len = length l
order = case len of
1 -> 100
2 -> 10
3 -> 1
_ -> 1
spanToLength :: Int -> (Char -> Bool) -> String -> (String, String)
spanToLength len p l = loop 0 l
where loop i z
| i >= len = ([], z)
| otherwise = case z of
[] -> ([], [])
x:xs -> if p x
then let (r1,r2) = loop (i+1) xs
in (x:r1, r2)
else ([], z)
toInt :: String -> Int
toInt = foldl (\acc w -> acc * 10 + (ord w - ord '0')) 0
decodingError reason = Left $ TypeDecodingFailed ("time format invalid for " ++ show timeType ++ " : " ++ reason)
hasNonASCII = maybe False (const True) . B.find (\c -> c > 0x7f)
-- FIXME need msec printed
putTime :: ASN1TimeType -> DateTime -> Maybe TimezoneOffset -> ByteString
putTime ty dt mtz = BC.pack etime
where
etime
| ty == TimeUTC = timePrint "YYMMDDHMIS" dt ++ tzStr
| otherwise = timePrint "YYYYMMDDHMIS" dt ++ msecStr ++ tzStr
msecStr = []
tzStr = case mtz of
Nothing -> ""
Just tz | tz == timezone_UTC -> "Z"
| otherwise -> show tz
putInteger :: Integer -> ByteString
putInteger i = B.pack $ bytesOfInt i
putBitString :: BitArray -> ByteString
putBitString (BitArray n bits) =
B.concat [B.singleton (fromIntegral i),bits]
where i = (8 - (n `mod` 8)) .&. 0x7
putString :: ByteString -> ByteString
putString l = l
{- no enforce check that oid1 is between [0..2] and oid2 is between [0..39] -}
putOID :: [Integer] -> ByteString
putOID oids = case oids of
(oid1:oid2:suboids) ->
let eoidclass = fromIntegral (oid1 * 40 + oid2)
subeoids = B.concat $ map encode suboids
in B.cons eoidclass subeoids
_ -> error ("invalid OID format " ++ show oids)
where
encode x | x == 0 = B.singleton 0
| otherwise = putVarEncodingIntegral x
putDouble :: Double -> ByteString
putDouble d
| d == 0 = B.pack []
| d == (1/0) = B.pack [0x40]
| d == negate (1/0) = B.pack [0x41]
| isNaN d = B.pack [0x42]
| otherwise = B.cons (header .|. (expLen - 1)) -- encode length of exponent
(expBS <> manBS)
where
(mkUnsigned, header)
| d < 0 = (negate, bINARY_NEGATIVE_NUMBER_ID)
| otherwise = (id, bINARY_POSITIVE_NUMBER_ID)
(man, exp) = decodeFloat d
(mantissa, exponent) = normalize (fromIntegral $ mkUnsigned man, exp)
expBS = putInteger (fromIntegral exponent)
expLen = fromIntegral (B.length expBS)
manBS = putInteger (fromIntegral mantissa)
-- | Normalize the mantissa and adjust the exponent.
--
-- DER requires the mantissa to either be 0 or odd, so we right-shift it
-- until the LSB is 1, and then add the shift amount to the exponent.
--
-- TODO: handle denormal numbers
normalize :: (Word64, Int) -> (Word64, Int)
normalize (mantissa, exponent) = (mantissa `shiftR` sh, exponent + sh)
where
sh = countTrailingZeros mantissa
#if !(MIN_VERSION_base(4,8,0))
countTrailingZeros :: FiniteBits b => b -> Int
countTrailingZeros x = go 0
where
go i | i >= w = i
| testBit x i = i
| otherwise = go (i+1)
w = finiteBitSize x
#endif
bINARY_POSITIVE_NUMBER_ID, bINARY_NEGATIVE_NUMBER_ID :: Word8
bINARY_POSITIVE_NUMBER_ID = 0x80
bINARY_NEGATIVE_NUMBER_ID = 0xc0
|