File: Clothes.hs

package info (click to toggle)
haskell-barbies 2.0.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 460 kB
  • sloc: haskell: 5,483; makefile: 3
file content (260 lines) | stat: -rw-r--r-- 6,413 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
{-# LANGUAGE GeneralizedNewtypeDeriving, DeriveFunctor #-}
module Clothes

where

import Prelude hiding ((.), id)

import Control.Category
import Data.Functor.Classes (Eq1(..), Show1(..), liftShowsPrec2, showsUnaryWith)
import Data.Functor.Identity
import qualified Data.List.NonEmpty as NE
import Data.Typeable

import Test.Tasty.QuickCheck

data UnitF a = UnitF deriving(Eq, Show, Typeable)

data F a = F [a]
  deriving(Eq, Show, Typeable, Functor)

instance Eq1 F where
  liftEq eq (F as) (F bs) = liftEq eq as bs

instance Show1 F where
  liftShowsPrec sp sl d (F as)
    = showsUnaryWith (liftShowsPrec sp sl) "F" d as

data G a = NoG | G1 a | Gn [a]
  deriving(Eq, Show, Typeable, Functor)

instance Eq1 G where
  liftEq _  NoG     NoG     = True
  liftEq _  NoG     _       = False
  liftEq eq (G1 a)  (G1 b)  = a `eq` b
  liftEq _  (G1 _)  _       = False
  liftEq eq (Gn as) (Gn bs) = liftEq eq as bs
  liftEq _  (Gn _ ) _       = False

instance Show1 G where
  liftShowsPrec sp sl d = \case
    NoG   -> showString "NoG"
    G1 a  -> showsUnaryWith sp "G1" d a
    Gn as -> showsUnaryWith (liftShowsPrec sp sl) "Gn" d as

data H a = NoH1 | NoH2 | H1 [a] | H2 [a] | H3 [a]
  deriving(Eq, Show, Typeable, Functor)

instance Show1 H where
  liftShowsPrec sp sl d = \case
    NoH1  -> showString "NoH1"
    NoH2  -> showString "NoH2"
    H1 as -> showsUnaryWith (liftShowsPrec sp sl) "H1" d as
    H2 as -> showsUnaryWith (liftShowsPrec sp sl) "H2" d as
    H3 as -> showsUnaryWith (liftShowsPrec sp sl) "H3" d as

instance Eq1 H where
  liftEq _  NoH1    NoH1    = True
  liftEq _  NoH1    _       = False
  liftEq _  NoH2    NoH2    = True
  liftEq _  NoH2    _       = False
  liftEq eq (H1 as) (H1 bs) = liftEq eq as bs
  liftEq _  (H1 _ ) _       = False
  liftEq eq (H2 as) (H2 bs) = liftEq eq as bs
  liftEq _  (H2 _ ) _       = False
  liftEq eq (H3 as) (H3 bs) = liftEq eq as bs
  liftEq _  (H3 _ ) _       = False

data I a = NoI1 | NoI2 | NoI3 | I1 a | I2 (a,a)
  deriving(Eq, Show, Typeable)

instance Show1 I where
  liftShowsPrec sp sl d = \case
    NoI1  -> showString "NoI1"
    NoI2  -> showString "NoI2"
    NoI3  -> showString "NoI3"
    I1 a  -> showsUnaryWith sp "I1" d a
    I2 aa -> showsUnaryWith (liftShowsPrec2 sp sl sp sl) "I2" d aa

instance Eq1 I where
  liftEq _  NoI1        NoI1      = True
  liftEq _  NoI1        _         = False
  liftEq _  NoI2        NoI2      = True
  liftEq _  NoI2        _         = False
  liftEq _  NoI3        NoI3      = True
  liftEq _  NoI3        _         = False
  liftEq eq (I1 a)      (I1 b)    = a `eq` b
  liftEq _  (I1 _ )     _         = False
  liftEq eq (I2 (a,b)) (I2 (c,d)) = (a `eq` c) && (b `eq` d)
  liftEq _  (I2 _ )    _          = False


instance Arbitrary a => Arbitrary (F a) where
  arbitrary
    = scale (`div` 2) $
        F <$> arbitrary

instance Arbitrary a => Arbitrary (G a) where
  arbitrary
    = scale (`div` 2) $
        oneof
          [ pure NoG
          , G1 <$> arbitrary
          , Gn <$> arbitrary
          ]

instance Arbitrary a => Arbitrary (H a) where
  arbitrary
    = scale (`div` 2) $
        oneof
          [ pure NoH1
          , pure NoH2
          , H1 <$> arbitrary
          , H2 <$> arbitrary
          , H3 <$> arbitrary
          ]

instance Arbitrary a => Arbitrary (I a) where
  arbitrary
    = scale (`div` 2) $
        oneof
          [ pure NoI1
          , pure NoI2
          , pure NoI3
          , I1 <$> arbitrary
          , I2 <$> arbitrary
          ]

newtype NatTransf f g
  = NatTransf {applyNat :: (forall a . f a -> g a)}


instance Category NatTransf where
  id    = NatTransf id
  f . g = NatTransf (applyNat f . applyNat g)

point :: (forall a . a -> f a) -> NatTransf Identity f
point mkPoint
  = NatTransf (\(Identity a) -> mkPoint a)

unit :: (forall a . f a) -> NatTransf UnitF f
unit u
  = NatTransf (\UnitF -> u)

headF :: NatTransf NE.NonEmpty Identity
headF
  = NatTransf (\(a NE.:| _) -> Identity a)

terminal :: NatTransf f UnitF
terminal
  = NatTransf (const UnitF)


instance (ArbitraryF f, ArbitraryF g) => Arbitrary (NatTransf f g) where
  arbitrary
    = scale (`div` 2) $
        do fromList <- arbitraryf
           pure (fromList . flattenf)


class ArbitraryF f where
  arbitraryf :: Gen (NatTransf [] f)
  flattenf   :: NatTransf f []


instance ArbitraryF F where
  arbitraryf
    = pure $ NatTransf F

  flattenf
    = NatTransf (\(F as) -> as)


instance ArbitraryF G where
  arbitraryf
    = mkArbitraryf
        [unit NoG]
        [point G1 , point (Gn . pure)]
        [NatTransf (Gn . NE.toList)]

  flattenf
    = NatTransf $ \case
        NoG   -> []
        G1 a  -> [a]
        Gn as -> as


instance ArbitraryF H where
  arbitraryf
    = mkArbitraryf
        [unit NoH1, unit NoH2]
        [point (H1 . pure), point (H2 . pure)]
        [ NatTransf (H1 . NE.toList)
        , NatTransf (H2 . NE.toList)
        , NatTransf (H2 . NE.toList)
        ]

  flattenf
    = NatTransf $ \case
        NoH1  -> []
        NoH2  -> []
        H1 as -> as
        H2 as -> as
        H3 as -> as

instance ArbitraryF I where
  arbitraryf
    = mkArbitraryf
        [unit NoI1, unit NoI2, unit NoI3]
        [point I1, NatTransf (\(Identity a) -> I2 (a, a))]
        [ NatTransf mkI2 ]
    where
      mkI2 = \case
        a NE.:| []    -> I2 (a, a)
        a NE.:| (b:_) -> I2 (a, b)

  flattenf
    = NatTransf $ \case
        NoI1     -> []
        NoI2     -> []
        NoI3     -> []
        I1 a     -> [a]
        I2 (a,b) -> [a,b]

mkArbitraryf
  :: [NatTransf UnitF f]
  -> [NatTransf Identity f]
  -> [NatTransf NE.NonEmpty f]
  -> Gen (NatTransf [] f)
mkArbitraryf us is ls
  = do let nullary = us
           unary   = is ++ map (. terminal) nullary
           nary    = ls ++ map (. headF) unary
       build <$> elements nullary <*> elements unary <*> elements nary
  where
    build u i l
      = NatTransf $ \case
          []   -> applyNat u UnitF
          [a]  -> applyNat i (Identity a)
          a:as -> applyNat l (a NE.:| as)

newtype FG
  = FG (NatTransf F G)
  deriving (Arbitrary)

newtype GH
  = GH (NatTransf G H)
  deriving (Arbitrary)

newtype HI
  = HI (NatTransf H I)
  deriving (Arbitrary)

instance Show FG
  where show _ = "<natural-transformation :: F -> G>"

instance Show GH
  where show _ = "<natural-transformation :: G -> H>"

instance Show HI
  where show _ = "<natural-transformation :: H -> I>"