1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
|
{-# LANGUAGE NoImplicitPrelude, UnicodeSyntax #-}
{-|
Module : Data.List.Unicode
Copyright : 2009–2011 Roel van Dijk
License : BSD3 (see the file LICENSE)
Maintainer : Roel van Dijk <vandijk.roel@gmail.com>
-}
module Data.List.Unicode
( (⧺)
, (∈), (∋), (∉), (∌)
, (∪), (∖), (∆), (∩)
) where
-------------------------------------------------------------------------------
-- Imports
-------------------------------------------------------------------------------
-- from base:
import Data.Bool ( Bool )
import Data.Eq ( Eq )
import Data.Function ( flip )
import Data.List ( (++), elem, notElem, union, (\\), intersect )
-------------------------------------------------------------------------------
-- Fixities
-------------------------------------------------------------------------------
infix 4 ∈
infix 4 ∋
infix 4 ∉
infix 4 ∌
infixr 5 ⧺
infixl 6 ∪
infixr 6 ∩
infixl 9 ∖
infixl 9 ∆
-------------------------------------------------------------------------------
-- Symbols
-------------------------------------------------------------------------------
{-|
(⧺) = ('++')
U+29FA, DOUBLE PLUS
-}
(⧺) ∷ [α] → [α] → [α]
(⧺) = (++)
{-# INLINE (⧺) #-}
{-|
(∈) = 'elem'
U+2208, ELEMENT OF
-}
(∈) ∷ Eq α ⇒ α → [α] → Bool
(∈) = elem
{-# INLINE (∈) #-}
{-|
(∋) = 'flip' (∈)
U+220B, CONTAINS AS MEMBER
-}
(∋) ∷ Eq α ⇒ [α] → α → Bool
(∋) = flip (∈)
{-# INLINE (∋) #-}
{-|
(∉) = 'notElem'
U+2209, NOT AN ELEMENT OF
-}
(∉) ∷ Eq α ⇒ α → [α] → Bool
(∉) = notElem
{-# INLINE (∉) #-}
{-|
(∌) = 'flip' (∉)
U+220C, DOES NOT CONTAIN AS MEMBER
-}
(∌) ∷ Eq α ⇒ [α] → α → Bool
(∌) = flip (∉)
{-# INLINE (∌) #-}
{-|
(∪) = 'union'
U+222A, UNION
-}
(∪) ∷ Eq α ⇒ [α] → [α] → [α]
(∪) = union
{-# INLINE (∪) #-}
{-|
(∖) = ('\\')
U+2216, SET MINUS
-}
(∖) ∷ Eq α ⇒ [α] → [α] → [α]
(∖) = (\\)
{-# INLINE (∖) #-}
{-|
Symmetric difference
a ∆ b = (a ∖ b) ∪ (b ∖ a)
U+2206, INCREMENT
-}
(∆) ∷ Eq α ⇒ [α] → [α] → [α]
a ∆ b = (a ∖ b) ∪ (b ∖ a)
{-# INLINE (∆) #-}
{-|
(∩) = 'intersect'
U+2229, INTERSECTION
-}
(∩) ∷ Eq α ⇒ [α] → [α] → [α]
(∩) = intersect
{-# INLINE (∩) #-}
|